a2 United States Patent
Shahrzad et al.

US009466023B1

US 9,466,023 B1
Oct. 11, 2016

(10) Patent No.:
45) Date of Patent:

(54) DATA MINING TECHNIQUE WITH
FEDERATED EVOLUTIONARY
COORDINATION

(71) Applicant: SENTIENT TECHNOLOGIES
(BARBADOS) LIMITED, Belleville

(BB)

Hormoz Shahrzad, Dublin, CA (US);
Babak Hodjat, Dublin, CA (US)

(72) Inventors:

(73) SENTIENT TECHNOLOGIES
(BARBADOS) LIMITED, Belleville,

St. Michael (BB)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 320 days.

@
(22)

Appl. No.: 14/011,062

Filed: Aug. 27, 2013

Related U.S. Application Data

(63) Continuation-in-part of application No. 12/267,287,

filed on Nov. 7, 2008.

Provisional application No. 61/075,722, filed on Jun.
25, 2008, provisional application No. 60/986,533,
filed on Nov. 8, 2007.

(60)

Int. C1.
GO6N 3/08
U.S. CL
CPC GO6N 3/086 (2013.01)
Field of Classification Search

None

See application file for complete search history.

(1)

(52)

(2006.01)

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

FOREIGN PATENT DOCUMENTS

Jp 08-110804 A 4/1996
Jp 2001325041 A 11/2001
(Continued)

OTHER PUBLICATIONS

Li, Xiaodong, and Michael Kirley. “The effects of varying popula-
tion density in a fine-grained parallel genetic algorithm.” Evolu-
tionary Computation, 2002. CEC’02. Proceedings of the 2002
Congress on. vol. 2. IEEE, 2002.*

(Continued)

Primary Examiner — Kakali Chaki

Assistant Examiner — Daniel Pellett

(74) Attorney, Agent, or Firm — Haynes Beffel &
Wolfeld LLP

57 ABSTRACT

Roughly described, a data mining arrangement for develop-
ing high quality classifiers using an evolutionary algorithm,
includes a plurality of “mid-chain” evolutionary coordina-
tors, down-chain of a main (top-chain) evolutionary coor-
dinator and up-chain of evolutionary engines. Multiple
levels of mid-chain evolutionary coordinators can be used in
a hierarchy, and the various branches of the hierarchy need
not have equal length. Each evolutionary coordinator (other
than the top-chain evolutionary coordinator) appears to its
up-chain neighbor as if it were an evolutionary engine,
though it does not actually perform any evolution itself.
Similarly, each evolutionary coordinator (including the top-
chain evolutionary coordinator) also appears to its down-
chain neighbors as a top-chain evolutionary coordinator.
Each mid-chain evolutionary coordinator maintains its own
local candidate pool, reducing the load on the top-chain
evolutionary coordinator pool, as well as reducing band-
width requirements. Only the evolutionary engines perform

5,930,780 A * 7/1999 Hughesccccconn.. G06N73/6 1/%8 actual testing of candidate individuals on training data.
7,013,344 B2 3/2006 Megiddo
(Continued) 44 Claims, 9 Drawing Sheets
RVN T Y /_520
FROM UPCHAIN EC TO UPCHARN EC
72 78
‘\{ CANDIDATE INSERTION CANDIDATE
RODULE HARVESTING MODULE
~ i
> |
~
~ |
~

712

TO DOWNCHAIN UNIT(S)

™ 522
TOCAL
CANDIDATE
POOL

COMPETITION MODULE

AGGREGATION MODULE

il

FROM DOWNCHAIN UNIT(S}

US 9,466,023 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

7,370,013 Bl 5/2008 Aziz et al.

7,444,309 B2 10/2008 Branke et al.
2002/0019844 Al* 2/2002 Kurowski ... GO6F 9/5072
709/201
2003/0158887 Al* 82003 Megiddo GOG6F 9/5072
709/201
2004/0210545 Al* 10/2004 Branke GO6N 3/126
706/45

2005/0033672 Al
2005/0198103 Al
2007/0100907 Al*
2007/0143759 Al
2007/0185990 Al
2008/0228644 Al
2010/0182935 Al

2/2005 Lasry et al.

9/2005 Ching

5/2007 Bayer GOGF 8/65
6/2007 Ozgur et al.

8/2007 Ono et al.

9/2008 Birkestrand et al.

7/2010 David

FOREIGN PATENT DOCUMENTS

JP 2003044665 A 2/2003
JP 2004240671 A 8/2004
JP 2004302741 A 10/2004
JP 2007207173 A 8/2007
JP 2007522547 A 8/2007
WO 2005073854 A2 8/2005

OTHER PUBLICATIONS

Fidelis, Marcos Vinicius, Heitor S. Lopes, and Alex A. Freitas.
“Discovering comprehensible classification rules with a genetic
algorithm.” Evolutionary Computation, 2000. Proceedings of the
2000 Congress on. vol. 1. IEEE, 2000.*

Dec. 23, 2008 International Search Report and Written Opinion for
PCT/US2008/82876, 10 pp.

Kozo, J.R., “Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection”, Dec. 1992, MIT Press, pp.
1-609.

Now. 26, 2012 Extended EP SR for EP 08847214 (GNFN 2110-3),
9 pp.

Enee, Gilles et al., “Classifier Systems Evolving Multi-Agent Sys-
tem with Distributed Elitism,” Proc. 1999 Congress on Evolutionary
Computation (CEC’99) vol. 3:6, Jul. 1999, pp. 1740-1746.

Tanev I et al., “Scalable architecture for parallel distributed imple-
mentation of genetic programming on network of workstations,” J.
Systems Architecture, vol. 47, Jul. 2001, pp. 557-572.

Streichert F., “Introduction to Evolutionary Algorithms,” paper to be
presented Apr. 4, 2002 at the Frankfurt MathFinance Workshop Mar.
30, 2002, Frankfurt, Germany, XP55038571, 22 pp. (retrieved from
the Internet: URL: http://www.ra.cs.uni-tuebingen.de/mita
rb/streiche/publications/Introduction to E volutionary Algorithms.
pdf).

Poli R et al., “Genetic Programmig: An introductory Tutorial and a
Survey of Techniques and Applications,” Univ. Essex School of
Computer Science and Electronic Engineering Technical Report No.
CES-475, Oct. 2007, 112 pp.

Jun. 16, 2011 Written Opinion from Singapore Patent Office in
related application SG 201003127-6, 9 pp.

Apr. 20, 2012 Exam Report for related application AU 2008323758,
2 pp.

Sakauchi et al., UNIFINE: A Next Generation Financial Solution
System of Nihon Unisys Ltd., Technology Review ‘Unisys,” Japan,
Nihon Unisys Ltd., Feb. 28, 2006, vol. 25, No. 4, pp. 14-15.

JP 2010-533295, Office Action dated Apr. 16, 2013, 12 pages.

* cited by examiner

U.S. Patent Oct. 11, 2016 Sheet 1 of 9 US 9,466,023 B1

FTNESS

120
FUNCTION v

CANDIDATE / 0
18 _< POOL

o
S

ELITIST POOL
N

/ TRAINING SYSTEM

TRAINING
DATA

114

112
116-S ya

“ PRODUCTION DATA
PRODUCTION PRODUCTION SYSTEM ™
POPULATION

122 ,
CUTPUT/ACTION

128
X_/ SIGNALS

/ 128
CONTROLLED SYSTEM

FG. 1

U.S. Patent

Oct. 11, 2016 Sheet 2 of 9

CANDIDATE POOL

TOR LAYER INDIVIDUALS

L2 INDIVIDUALS

L1 INDIVIDUALS

INEXPERIENCER INDIVIDUALS

FIG. 2

US 9,466,023 B1

/ 118

QuotalLT), ExpMin(LT),
FitMin(LT)

Quotall.?), ExpMin(LZ),

FitMin(L2)

Quota{l 1), BxpMin{L1),
FitMin(L1)

U.S. Patent Oct. 11, 2016 Sheet 3 of 9 US 9,466,023 B1

INDIMIDUAL

312\ 54\ w\ /319

RULE1
RULEZ
RULE3
RULE4
RULE S

INDIVIDUAL ID JEXPERIENCE | FITNESS | T
PNV 1.1 PV 12 PV 1M [OUTPUTY
PV 2.1 PV 22 PV2M | OUTPUT2
PIV 3.1 PV 3.2 Pvam | ouTPUTS
PV 4.1 PV 4.2 PIVAM | OUTPUT4
PIVE.] PV 5.2 PVEM [OUTPUTS
FIG. 3

/114

TRAINING DATA

DATE SECURITY

Raw market data for entire day, e.g. tick data, trading volume data, price, elc.,
and all other data needed lo test performance of the individual on this security on
this historical frading day

DATE SECURITY

410
Raw market data for entire day, e.q. lick data, trading volume data, price, eic.,

and all other data needed o test performance of the individual on this security on
this historical trading day

DATE SECURITY

Raw marke! data for entire day, e.g. tick data, rading volums data, price, slc.,
and all other data nesded to test performance of the individual on this security on
this historical trading day

FiG. 4

US 9,466,023 B1

Sheet 4 of 9

Oct. 11, 2016

U.S. Patent

&S

(344 ¥vivd

LA
«

™

HIONS
AHYROIL
-VIOAd

NIDNT
AHYNOIL
YIOAS

HNIONT
AHVNCIL
-N0A3

NIONH NESNE
AHVYNOLL AHYNOIL
-110AF -MCAZ

RIONE
AYYNOLL
I0A3

NEDRH
AIYNOIE
-0

9225

o:\

03
NIYHO-CIN

NIONT NIONT
AHYNOIL AHYNQLL
-T10A3 -[10Ad

Ol

WE| or
NIVHO G | 225 NIVHO-CI
@umwb
G028 70TS
4228 53 oE
NIVHO-GIN | NIYHO-QIN
{(zo3) (o3 g
2028 \ Ewﬂﬁm\
e
LG 03
NIVHO 0L
{nay)
015

{z39)
Z-088

U.S. Patent Oct. 11, 2016 Sheet 5 of 9 US 9,466,023 B1

EVOLUTIONARY ENGINE
/ 530
FROM UPCHAIN EC TO UPCHAIN EC
618
622 —\
LOCAL POOL INITIALIZATION CANDIDATE INSERTION CANDIDATE
810 A MODULE N MODULE HARVESTING MODULE
' N
N
-~
N \ -
620 —\ -
0
612 N
.
_\\ CANDIDATE TESTING LOCAL
MODULE - CANDIDATE
POOL
532 v
o \ — 616
P ~N k
%
614
_| comPeTITION MODULE PROCREATION MODULE

CANDIDATE PROCESSING MODULE

FIG. 6

U.S. Patent Oct. 11, 2016 Sheet 6 of 9 US 9,466,023 B1

MID-CHAIN EVOLUTIONARY

COORDINATOR / 520

FROM UPCHAINEC TO UPCHAIN EC

[l T 718
\ CANDIDATE INSERTION CANDIDATE /

MODULE HARVESTING MODULE
S
~N T
D |
N
\ |
~N
7z 522
\ CANDIDATE DELEGATION
MODULE ¢ - CANDIDATE
POOL

¢ 714

COMPETITION MODULE /

/ 716
AGGREGATION MODULE
v T

TO DOWNCHAIN UNIT(S) FROM DOWNCHAIN UNIT(S)

«—

FIG.7

U.S. Patent

Oct. 11, 2016

Sheet 7 of 9

TOP-CHAIN EVOLUTIONARY

COORDINATOR

812 —~_ 1

CANDIDATE DELEGATION
MOBULE

v
TO DOWNCHAIN UNIT(S)

/519

122

PRODUCTION
POPULATION

CANDIDATE
HARVESTING MODULE

LOCAL
CANDIDATE
POOL

COMPETITION MODULE

M—e

AGGREGATION MODULE

I

FROM DOWNCHAIN UNIT(S)

FIG. 8

US 9,466,023 B1

U.S. Patent Oct. 11, 2016 Sheet 8 of 9 US 9,466,023 B1

COMPETITION MODULE

/614, 714,84

STRATIFY INDIVIDUALS INTQ
LAYERS

_/\
e ASSIGN TO LG ALL INDIVIDUALS
_/\

HAVING Experience<ExpMin{L1}

v

RANK INDIVIDUALS IN EACH LAYER
o2 BY FITNESS

v

FOR INDIVIDUALS >= ExpMin{LT), ASSIGN
~ Quota(LT) FITTEST INDIVIDUALS TO LT

v

FOR INDIVIDUALS GRADUATING LOTO L1, IFLT
15—/) FULL DISCARD ALL INDIVIDUALS HAVING
FITNESS < f(FiMiniLT))

v

FOR EACH LAYER LiBELOW LT IN ELITIST POOL,
e ASSIGN TO Li THE Quota(Li} FITTEST INDIVIDUALS

818 HAVING EXPERIENCE WITHIN THE RANGE
ExpMin{Liy<=experignce<kxpMin(Li+1)

v

DISCARD ALL UNASSIGNED
A INDIVIDUALS

DONE

FIG. 8

U.S. Patent Oct. 11, 2016 Sheet

9 of 9 US 9,466,023 B1

1010
/_

1026 \ STORAGE SUBSYSTEM

COMPUTER SYSTEM

COMMUNICATION _f_
NETWORK

FiG. 10

1028 v 1024
MEMORY SUBSYSTEM 7 1000
ROM AL STORAGE USER INTERFACE
N SUBSYSTEM INPUT DEVICES
1012
(— 1014 (01
7 1020
PROCESSOR NETWORK USER INTERFACE
SUBSYSTEM INTERFACE QUTPUT DEVICES
1048

US 9,466,023 Bl

1

DATA MINING TECHNIQUE WITH
FEDERATED EVOLUTIONARY
COORDINATION

CROSS-REFERENCE TO OTHER
APPLICATIONS

This application is a Continuation-In-Part of U.S. appli-
cation Ser. No. 12/267,287, filed Nov. 7, 2008, entitled
“DISTRIBUTED NETWORK FOR PERFORMING COM-
PLEX ALGORITHMS”, which application is a non-provi-
sional of U.S. Application No. 61/075,722, filed Jun. 25,
2008, entitled “DISTRIBUTED NETWORK FOR PER-
FORMING COMPLEX ALGORITHMS”, and a non-pro-
visional of U.S. Application No. 60/986,533, filed Nov. 8§,
2007, entitled “DISTRIBUTED NETWORK FOR PER-
FORMING COMPLEX ALGORITHMS”. All of the above
applications are incorporated herein by reference for their
teachings.

The following patent applications are also incorporated
herein for their teachings:

U.S. application Ser. No. 12/769,589, filed Apr. 28, 2010,
entitled “DISTRIBUTED EVOLUTIONARY ALGO-
RITHM FOR ASSET MANAGEMENT AND TRAD-
ING™,

U.S. application Ser. No. 12/769,605, filed Apr. 28, 2010,
entitled “CLASS-BASED DISTRIBUTED EVOLU-
TIONARY ALGORITHM FOR ASSET MANAGE-
MENT AND TRADING”; and

U.S. application Ser. No. 13/184,307, filed Jul. 15, 2011,
entitled “DATA MINING TECHNIQUE WITH EXPE-
RIENCE-LAYERED GENE POOL”.

BACKGROUND

The invention relates generally to data mining, and more
particularly, to the use of genetic algorithms to extract useful
rules or relationships from a data set for use in controlling
systems.

In many environments, a large amount of data can be or
has been collected which records experience over time
within the environment. For example, a healthcare environ-
ment may record clinical data, diagnoses and treatment
regimens for a large number of patients, as well as outcomes.
A business environment may record customer information
such as who they are and what they do, and their browsing
and purchasing histories. A computer security environment
may record a large number of software code examples that
have been found to be malicious. A financial asset trading
environment may record historical price trends and related
statistics about numerous financial assets (e.g., securities,
indices, currencies) over a long period of time. Despite the
large quantities of such data, or perhaps because of it,
deriving useful knowledge from such data stores can be a
daunting task.

The process of extracting patterns from such data sets is
known as data mining. Many techniques have been applied
to the problem, but the present discussion concerns a class
of techniques known as genetic algorithms. Genetic algo-
rithms have been applied to all of the above-mentioned
environments. With respect to stock categorization, for
example, according to one theory, at any given time, 5% of
stocks follow a trend. Genetic algorithms are thus some-
times used, with some success, to categorize a stock as
following or not following a trend.

Evolutionary algorithms, which are supersets of Genetic
Algorithms, are classifiers which are good at traversing

10

15

20

25

30

35

40

45

50

55

60

65

2

chaotic search spaces. According to Koza, J. R., “Genetic
Programming: On the Programming of Computers by
Means of Natural Selection”, MIT Press (1992), incorpo-
rated by reference herein, an evolutionary algorithm can be
used to evolve complete programs in declarative notation.
The basic elements of an evolutionary algorithm are an
environment, a model for a genotype (referred to herein as
an “individual”), a fitness function, and a procreation func-
tion. An environment may be a model of any problem
statement. An individual may be defined by a set of rules
governing its behavior within the environment. A rule may
be a list of conditions followed by an action to be performed
in the environment. A fitness function may be defined by the
degree to which an evolving rule set is successfully nego-
tiating the environment. A fitness function is thus used for
evaluating the fitness of each individual in the environment.
A procreation function generates new individuals by mixing
rules with the fittest of the parent individuals. In each
generation, a new population of individuals is created.

At the start of the evolutionary process, individuals con-
stituting the initial population are created randomly, by
putting together the building blocks, or alphabets, that form
an individual. In genetic programming, the alphabets are a
set of conditions and actions making up rules governing the
behavior of the individual within the environment. Once a
population is established, it is evaluated using the fitness
function. Individuals with the highest fitness are then used to
create the next generation in a process called procreation.
Through procreation, rules of parent individuals are mixed,
and sometimes mutated (i.e., a random change is made in a
rule) to create a new rule set. This new rule set is then
assigned to a child individual that will be a member of the
new generation. In some incarnations, known as elitist
methods, the fittest members of the previous generation,
called elitists, are also preserved into the next generation.

In environments having a very large search space for
optimal individuals, the computational demands of an evo-
Iutionary algorithm can become prohibitive. The present
invention addresses this problem.

SUMMARY

The above-incorporated patent applications describe cli-
ent/server arrangements for implementing an evolutionary
data mining system. In some such arrangements, the pool of
candidate individuals is distributed over a multitude of
clients for evaluation. Each client continues to evaluate its
own client-centric candidate pool using portions of data
from a training database or data feed, which it may receive
in bulk or recurrently. Individuals that satisfy one or more
predefined conditions on a client computer are transmitted to
the server to form part of a server candidate pool.

One bottleneck of many client/server arrangements arises
where the server manages a single instance of the candidate
pool, containing what is believed to be the best individuals
so far developed. The server itself can be clustered for load
balancing purposes, but all clustered servers still need to
know the latest status of the pool, and can both read and
write to it, and these operations can happen quite frequently
under load. There is also a problem of bandwidth when too
many clients are sending material up to the server cluster,
which generally has to be physically near the place where
the candidate pool is persisted (e.g., a database server).

In order to address this bottleneck, the functions of the
server are federated. Roughly described, this is achieved by
providing “mid-chain” evolutionary coordinators, and plac-
ing them between the main server (which in this arrange-

US 9,466,023 Bl

3

ment can be called a “top-chain” evolutionary coordinator,
or a “master” evolutionary coordinator) and the clients
(which in this arrangement can be called “evolutionary
engines”). Multiple levels of mid-chain evolutionary coor-
dinators can be used in a hierarchy, and the various branches
of the hierarchy need not have equal length. Each evolu-
tionary coordinator (other than the top-chain evolutionary
coordinator) appears to its up-chain neighbor as if it were an
evolutionary engine, though it does not actually perform any
evolution itself. Similarly, each evolutionary coordinator
(including the top-chain evolutionary coordinator) also
appears to its down-chain neighbors as a top-chain evolu-
tionary coordinator. Each mid-chain evolutionary coordina-
tor maintains its own local candidate pool, reducing the load
on the top-chain evolutionary coordinator pool, as well as
reducing bandwidth requirements.

In an embodiment, roughly described, each of the evolu-
tionary engines includes a module which receives individu-
als to be tested and inserts them into the engine’s local
candidate pool; a candidate pool processor which tests
individuals from the engine’s local pool and updates their
fitness estimates locally in dependence upon the tests; and a
candidate harvesting module which forwards selected ones
of the individuals from the engine’s candidate pool to the
engine’s up-chain evolutionary coordinator.

Each of the mid-chain evolutionary coordinators includes
a module which receives individuals to be tested and inserts
them into the coordinator’s pool; a delegation module which
forwards selected ones of the individuals from the coordi-
nator’s pool to its down-chain units for testing; a competi-
tion module which receives back individuals from the down-
chain units after testing, updates the fitness estimates of the
received individuals locally in dependence upon the results
of such testing, and selects individuals for discarding in
dependence upon their updated fitness estimates; and a
candidate harvesting module which forwards selected ones
of the individuals from the coordinator’s pool to the coor-
dinator’s up-chain evolutionary coordinator, which as pre-
viously mentioned may be the top-chain evolutionary coor-
dinator or another mid-chain evolutionary coordinator.

The top-chain evolutionary coordinator includes a del-
egation module which forwards selected ones of the indi-
viduals from the top-chain coordinator’s pool to its down-
chain units for testing; a competition module which receives
back individuals from the down-chain units after testing,
updates the fitness estimates of the received individuals in
the top-chain coordinator’s candidate pool in dependence
upon the results of such testing, and selects individuals for
discarding in dependence upon their updated fitness esti-
mates; and a candidate harvesting module which provides
for deployment selected ones of the individuals from the
coordinator’s pool.

The above summary of the invention is provided in order
to provide a basic understanding of some aspects of the
invention. This summary is not intended to identify key or
critical elements of the invention or to delineate the scope of
the invention. Its sole purpose is to present some concepts of
the invention in a simplified form as a prelude to the more
detailed description that is presented later. Particular aspects
of the invention are described in the claims, specification
and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described with respect to specific
embodiments thereof, and reference will be made to the
drawings, in which:

25

30

35

40

45

4

FIG. 1 is an overall diagram of an embodiment of a data
mining system incorporating features of the invention.

FIG. 2 is a symbolic drawing of the candidate pool in FIG.
1.

FIG. 3 is a symbolic drawing of an individual in either the
candidate pool or the production population of individuals in
FIG. 1.

FIG. 4 is a symbolic drawing indicating how training data
is organized in the training database in FIG. 1.

FIG. 5 is a symbolic diagram of training system of FIG.
1.

FIG. 6 illustrates various modules that can be used to
implement the functionality of an evolutionary engine of
FIG. 5.

FIG. 7 illustrates various modules that can be used to
implement the functionality of a mid-chain evolutionary
coordinator of FIG. 5.

FIG. 8 illustrates various modules that can be used to
implement the functionality of a top-chain evolutionary
coordinator of FIG. 5.

FIG. 9 illustrates a method of operation of the competition
modules in FIGS. 6, 7 and/or 8.

FIG. 10 is a simplified block diagram of a computer
system that can be used to implement any or all of the
evolutionary units, the production system, and the data feed
server in FIGS. 1 and 5.

DETAILED DESCRIPTION

The following description is presented to enable any
person skilled in the art to make and use the invention, and
is provided in the context of a particular application and its
requirements. Various modifications to the disclosed
embodiments will be readily apparent to those skilled in the
art, and the general principles defined herein may be applied
to other embodiments and applications without departing
from the spirit and scope of the present invention. Thus, the
present invention is not intended to be limited to the embodi-
ments shown, but is to be accorded the widest scope
consistent with the principles and features disclosed herein.

Data mining involves searching for patterns in a database.
The fittest individuals are considered to be those that iden-
tify patterns in the database that optimize for some result. In
embodiments herein, the database is a training database, and
the result is also represented in some way in the database.
Once fit individuals have been identified, they can be used
to identify patterns in production data which are likely to
produce the desired result. In a healthcare environment, the
individual can be used to point out patterns in diagnosis and
treatment data which should be studied more closely as
likely either improving or degrading a patient’s diagnosis. In
a financial assets trading environment, the individual can be
used to detect patterns in real time data and assert trading
signals to a trading desk. The action signals from an indi-
vidual can be transmitted to the appropriate controlled
system for execution.

One difference between the data mining environments of
the embodiments described herein, and many other environ-
ments in which evolutionary algorithms can be applied, is
that the fitness of a particular individual in the data mining
environment usually cannot be determined by a single test of
the individual on the data; rather, the fitness estimation itself
tends to vary as it is tested on more and more samples in the
training database. The fitness estimate can be inaccurate as
testing begins, and confidence in its accuracy increases as
testing on more samples continues. This means that if an
individual is “lucky” early on, in the sense that the first set

US 9,466,023 Bl

5

of samples that it was given for testing happened to have
been in some sense “easy”, then after only the first set of
samples the individual will appear to be fitter than it actually
is. If compared to other individuals that have much more
experience, lucky individuals could displace individuals
whose fitness estimates are lower but more realistic. If care
is not taken, therefore, the algorithm will optimize for
individuals that are lucky early on, rather than their actual
fitness.

A solution to this problem is to consider individuals for
the elitist pool only after they have completed testing on a
predetermined number of samples, for example 1000
samples. Once an individual has reached that minimum
threshold experience level, comparisons with other individu-
als are considered valid and can compete on the basis of
fitness for a place in the elitist pool. The same problem can
occur to a lesser degree even to individuals within the elitist
pool, and a similar solution can be applied there as well.
Thus in general, in embodiments herein, the elitist pool
contains T layers numbered L -L., with T>1. The overall
pool of candidate individuals also includes some that have
not yet undergone sufficient numbers of tests to be consid-
ered for the elitist pool, and those individuals are considered
herein to reside in a layer below the elitist pool, designed
layer O (L,). Each i’th one of the layers in [L, . . . L]
contains only individuals with a respective range of testing
experience [ExpMin(L,) . . . ExpMax(L,)], each ExpMin
(L,,,)»ExpMax(L,). The minimum experience level of the
bottom layer L is 0, and the top layer L, has a minimum
experience level ExpMin(L,) but no maximum experience
level. Preferably, the experience ranges of contiguous layers
are themselves contiguous, so that ExpMin(L,,,)=ExpMax
(L)+1, for 0<=i<T. Note that testing experience level is a
significantly different basis on which to stratify individuals
in an elitist pool than age in the sense of ALPS. ALPS means
Age-Layered Population Structure, in which an individual’s
age is used to restrict competition and breeding between
individuals in the population. In the parlance of ALPS, “age”
is a measure of the number of times that an individual’s
genetic material has survived a generation (i.e., the number
of times it has been preserved due to being selected into the
elitist pool), rather than a measure of the number of training
samples on which an individual has been tested.

In an embodiment, each layer i in the elitist pool (i.e. in
layers [L;, . . . L;]) is permitted to hold a respective
maximum number of individuals, Quota(L,). The quota is
chosen to be small enough to ensure competition among the
individuals within the corresponding range of experience
levels, but large enough to ensure sufficient diversity among
the fit individuals that graduate to the next higher layer.
Preferably the quota of each such layer is fixed, but in
another embodiment it could vary. The quota of layer L, is
not chosen based on these criteria, since the individuals in
that layer do not yet compete. Preferably the number of
layers T in the elitist pool is also fixed, but in another
embodiment it can vary.

As each individual gains more experience, assuming it is
not displaced within its current experience layer, it will
eventually graduate to the next higher experience layer. If
the next higher experience layer is not yet full, then the
individual is added to that layer. If it is full, then the
individual has to compete for its place in that layer. If it is
fitter than the least fit individual in that layer, it will be
accepted into that layer and the least fit individual will be
discarded. If not, then the graduating individual will be
discarded and the individuals in the next higher layer will be
retained.

30

40

45

55

6

Either way, a space is opened in the current experience
layer (the layer from which the individual is graduating).
The open space means that the next individual graduating
into the current experience layer from below will be
accepted without having to compete for its place—thereby
defeating a purpose of the elitist pool. To mitigate this
problem, an embodiment introduces the concept of an elitist
pool minimum fitness, which in one embodiment is set to the
minimum fitness of the top layer. Thus in the embodiment,
once the elitist pool minimum fitness is set, any individual
being considered into the elitist pool can only be added if it
has a fitness value above the elitist pool minimum fitness.
Stated differently, once the top layer L, is full, individuals
are not allowed to enter | unless their fitness level is at least
as high as the minimum fitness FitMin(L.,) of the top layer
L. In an alternative embodiment, the elitist pool minimum
fitness is set at some other function f{) that depends at least
on FitMin(L. ;). In an embodiment, the elitist pool minimum
fitness is not established until the top layer is full.

In an embodiment, individuals that have reached the top
layer do not undergo further testing.

In one embodiment, individuals are harvested from the
entire elitist pool for use against production data. In another
embodiment, only individuals that have reached the top
layer are subject to harvesting. In either embodiment, further
selection criteria can be applied in the harvesting process.
Such criteria is usually specific to the application environ-
ment, and can include, for example, fitness, consistency, and
O on.

EXAMPLE EMBODIMENT

FIG. 1 is an overall diagram of an embodiment of a data
mining system incorporating features of the invention. The
system is divided into three portions, a training system 110,
a production system 112, and a controlled system 128. The
training system 110 interacts with a database 114 containing
training data, as well as with another database 116 contain-
ing the candidate pool. As used herein, the term “database”
does not necessarily imply any unity of structure. For
example, two or more separate databases, when considered
together, still constitute a “database” as that term is used
herein. In particular, though candidate pool 116 may appear
in FIG. 1 as a unitary structure, whereas in the federated
embodiments described herein it is actually spread over
multiple storage units. The candidate pool database 116
includes a portion 118 containing the elitist pool. The
training system 110 operates according to a fitness function
120, which indicates to the training system 110 how to
measure the fitness of an individual. The training system 110
optimizes for individuals that have the greatest fitness,
however fitness is defined by the fitness function 120. The
fitness function is specific to the environment and goals of
the particular application. For example, the fitness function
may be a function of the predictive value of the individual
as assessed against the training data—the more often the
individual correctly predicts the result represented in the
training data, the more fit the individual is considered. In a
financial asset trading environment, an individual might
provide trading signals (e.g. buy, sell, hold current position,
exit current position), and fitness may be measured by the
individual’s ability to make a profit, or the ability to do so
while maintaining stability, or some other desired property.
In the healthcare domain, an individual might propose a
diagnosis based on patient prior treatment and current vital
signs, and fitness may be measured by the accuracy of that
diagnosis as represented in the training data.

US 9,466,023 Bl

7

The production system 112 operates according to a pro-
duction population of individuals in another database 122.
The production system 112 applies these individuals to
production data 124, and produces outputs 126, which may
be action signals or recommendations. In the financial asset
trading environment, for example, the production data 124
may be a stream of real time stock prices and the outputs 126
of the production system 112 may be the trading signals or
instructions that one or more of the individuals in production
population 122 outputs in response to the production data
124. In the healthcare domain, the production data 124 may
be current patient data, and the outputs 126 of the production
system 112 may be a suggested diagnosis or treatment
regimen that one or more of the individuals in production
population 122 outputs in response to the production data
124. The production population 122 is harvested from the
training system 110 once or at intervals, depending on the
embodiment. Preferably, only individuals from elitist pool
118 are permitted to be harvested. In an embodiment, further
selection criteria is applied in the harvesting process.

The controlled system 128 is a system that is controlled
automatically by the signals 126 from the production sys-
tem. In the financial asset trading environment, for example,
the controlled system may be a fully automated brokerage
system which receives the trading signals via a computer
network (not shown in FIG. 1) and takes the indicated
action. Depending on the application environment, the con-
trolled system 128 may also include mechanical systems
such as a engines, air-conditioners, refrigerators, electric
motors, robots, milling equipment, construction equipment,
or a manufacturing plant.

FIG. 2 is a symbolic drawing of the candidate pool 116 in
FIG. 1. As can be seen, the individuals in the pool are
stratified into T+1 “experience layers”, labeled L, through
L. The individuals in L, are very inexperienced (have been
tested on only a relatively small number of samples in
training data 114, if any), whereas the higher layers contain
individuals in successively greater experience ranges. The
layers L, through L, constitute the elitist pool 118 (FIG. 1).
Each layer i in the elitist pool 118 has associated therewith
three “layer parameters™: a quota Quota(L,) for the layer, a
range of experience levels [ExpMin(L,) . . . ExpMax(L,)] for
the layer, and the minimum fitness FitMin(L,) for the layer.
For example, an embodiment in the financial asset trading
environment may have on the order of 40 or 50 layers in the
elitist pool, each containing individuals with experience
levels within a range on the order of 4000-5000 trials. The
minimum experience level ExpMin(L,) may be on the order
of 8000-10,000 trials, and each layer may have a quota on
the order of 100 individuals.

In the embodiment of FIG. 2, the quotas for all the layers
in the elitist pool 118 are equal and fixed. Neither is required
in another embodiment. In addition, ExpMin(L,)=0 in this
embodiment. Also, as the experience ranges of the layers are
contiguous, ExpMin of each layer can be inferred as one
higher than ExpMax of the next lower layer, or ExpMax of
each layer can be inferred as one lower than ExpMin of the
next higher layer. Thus only the minimum experience level
or the maximum experience level need be specified for each
layer. In the embodiment, only the minimum experience
levels are specified, and they are specified for layers L;-L 5
in another embodiment only the maximum experience levels
are specified, and they are specified for layers L,-L,.,. In yet
another embodiment, the size of the range of experience
layers assigned to all the layers is constant, and only one
minimum or maximum experience level is specified in the

10

15

20

25

30

35

40

45

50

55

60

65

8

layer parameters; the remainder are calculated algorithmi-
cally as needed. Other variations will be apparent.

The FitMin() values in FIG. 2 are not specified a priori.
Rather, they are filled by copying from the fitness estimate
associated with the least fit individual in each layer. When-
ever the fitness estimate of the least fit individual is updated,
and whenever the least fit individual itself is replaced, the
FitMin() value associated with the layer is updated corre-
spondingly. The FitMin() values are needed for comparing
to the fitness estimation of individuals coming up from the
next lower layer, and having them associated directly with
each layer can simplify this comparison. In another embodi-
ment, each layer can instead contain a pointer to the least fit
individual in the layer, and the comparison method can
obtain the layer minimum fitness from that individual itself.
In general, each layer has associated with it an “indication”
of the minimum fitness in the layer. As used herein, an
“indication” of an item of information does not necessarily
require the direct specification of that item of information.
Information can be “indicated” in a field by simply referring
to the actual information through one or more layers of
indirection, or by identifying one or more items of different
information which are together sufficient to determine the
actual item of information. In addition, the term “identifi-
cation” and its variants are used herein to mean the same as
“indication”.

In one embodiment, the experience layer in candidate
pool 116 define separate regions of memory, and the indi-
viduals having experience levels within the range of each
particular layer are stored physically within that layer.
Preferably, however, the experience layers are only implied
by the layer parameters and the individuals can actually be
located anywhere in memory. In one embodiment, the
individuals in candidate pool 116 are stored and managed by
conventional database management systems (DBMS), and
are accessed using SQL statements. Thus a conventional
SQL query can be used to obtain, for example, the fitness
estimate of the least fit individual in the highest layer. New
individuals can be inserted into the candidate pool 116 using
the SQL “insert” statement, and individuals being discarded
can be deleted using the SQL “delete” statement. In another
embodiment, the individuals in candidate pool 116 are
stored in a linked list. In such an embodiment insertion of a
new individual can be accomplished by writing its contents
into an element in a free list, and then linking the element
into the main linked list. Discarding of individuals involves
unlinking them from the main linked list and re-linking them
into the free list.

FIG. 3 is a symbolic drawing of an individual 310 in either
the candidate pool 116 or the production population 122 of
individuals. As used herein, an “individual” is defined by its
contents. An individual created by procreation is considered
herein to constitute a different individual than its parents,
even though it retains some if its parents’ genetic material.
In this embodiment, the individual identifies an 1D 312, its
experience level 314, and its current fitness estimate 316. An
individual represents a full solution-space in that it contains
the “classification rules” 318 needed to classify an item of
test data. Each rule contains one or more conditions 320 and
an output 322 to be asserted if all the conditions in a given
sample are true. During procreation, any of the conditions or
any of the outputs may be altered, or even entire rules may
be replaced. The individual’s experience level 314 incre-
ments by one for each sample of the training data 114 on
which it is tested, and its fitness estimate 316 is determined
by fitness function 120, averaged (or otherwise combined)
over the all the trials.

US 9,466,023 Bl

9

A rule is a conjunctive list of indicator-based conditions
in association with an output. Indicators are the system
inputs that can be fed to a condition. These indicators are
represented in the training database 114, as well as in the
production data 124. Indicators can also be introspective, for
example by indicating the fitness estimate of the individual
at any given moment. In the embodiment of FIG. 1, the
individual’s conditions are all specified as parameter/value
(“P/V”) pairs. That is, if in the current sample, the specified
parameter has the specified value (or range of values), then
the condition is true. Another embodiment can also include
conditions which are themselves conditioned on other items
(such as other conditions in the rule or in a different rule or
the result of another entire one of the rules). Yet another
embodiment can also include conditions or rules which are
specified procedurally rather than as P/V pairs. Many other
variations will be apparent.

In a financial asset trading embodiment, during training,
an individual can be thought of as a virtual trader that is
given a hypothetical sum of money to trade using historical
data. Such trades are performed in accordance with a set of
rules that define the individual thereby prompting it to buy,
sell, hold its position, or exit its position. The outputs of the
rules are trading action signals or instructions, such as buy,
sell, exit or hold. Rules may also be designed to contain
gain-goal and stop-loss targets, thus rendering the exit action
redundant. A hold occurs when no rule in the individual is
triggered, therefore, the individual effectively holds its cur-
rent position. The indicators on which the rules are based can
be, for example, a time increment (“tick™), or the closing
price for a stock day.

The following code defines an example rule in terms of
conditions and indicators, as well as the action asserted by
the rule, in accordance with one embodiment of the present
invention:

if (PositionProfit>=2% and !(tick=(-54/10000)%
prev tick and MACD is negative)

and !(tick=(-119/10000)% prev tick and Position is
long))

and 1(4DXx100<=5052))

then SELL

ccyo

where “and” represents logical “AND” operation, rep-
resents logical “NOT” operation, “tick”, “MACD” and
“ADX” are stock indicators, “SELL” represents action to
sell, and “PositionProfit” represents the profit position of the
individual.

In a healthcare embodiment, an individual can be thought
of as a set of rules predicting a patient’s future state, given
the patient’s current and past state. The outputs of the rules
can be proposed diagnoses or proposed treatment regimens
that the individual asserts are appropriate given the condi-
tions of the individual’s rules. The indicators on which the
rules are based can be a patient’s vital signs, and past
treatment and medication history, for example. An example
rule is as follows:

if pulse>=120 and 18<=blood pressure[6]<20 and
temp>=104 and surgery duration<22 and clamp
on artery and medication=EB45 and last medi-
cation>=60 and !white blood cell count [3]<-
2.3 and loxygen level [1]<-1.1-->>>

then thromboembolism @ prob<=0.65

In an embodiment, an individual can also contain or
identify a history of the separate fitness trials to which the

10

15

20

25

30

35

40

45

50

55

60

65

10

individual has been subjected. Such a fitness history can be
used to avoid re-testing the individual on the same data
sample, or can be used to remove the effect of duplicate tests
performed on an individual in different testing batteries
before merging the fitness evaluations. It can also be used to
help diversify the candidate pool, by comparing or weight-
ing individuals not only on their overall fitness evaluations,
but also on the way they reached their overall fitness
evaluations. Fitness trial history also can be taken account
when filtering the final pool of individuals for selection for
deployment.

The training data is arranged in the database 114 as a set
of' samples, each with parameters and their values, as well as
sufficient information to determine a result that can be
compared with an assertion made by an individual on the
values in the sample. In one embodiment, the result is
explicit, for example a number set out explicitly in associa-
tion with the sample. In such an embodiment, the fitness
function can be dependent upon the number of samples for
which the individual’s output matches the result of the
sample. In another embodiment, such as in the financial
asset trading embodiment, the result may be only implicit.
For example, the sample may include the price of an asset
at each tick throughout a trading day, and the training system
110 must hypothetically perform all the trading recommen-
dations made by the individual throughout the trading day in
order to determine whether and to what extent the individual
made a profit or loss. The fitness function can be dependent
upon the profit or loss that the individual, as a hypothetical
trader, would have made using the tick data for the sample.

FIG. 4 is a symbolic drawing indicating how the training
data is organized in the database 114. The illustration in FIG.
4 is for the financial asset trading embodiment, and it will be
understood how it can be modified for use in other envi-
ronments. Referring to FIG. 4, three samples 410 are shown.
Each sample includes a historical date, an identification of a
particular security or other financial asset (such as a par-
ticular stock symbol), and raw historical market data for that
financial asset on that entire trading day, e.g. tick data,
trading volume data, price, etc.; and all other data needed to
test performance of the individual’s trading recommenda-
tions on this asset on this historical trading day. In another
embodiment, a sample can contain tick data for a different
time interval, which may be shorter or longer than one
trading day.

Federated Client/Server Arrangement

In some environments, the training data used to evaluate
an individual’s fitness can be voluminous. Therefore, even
with modern high processing power and large memory
capacity computers, achieving quality results within a rea-
sonable time is often not feasible on a single machine. A
large candidate pool also requires a large memory and high
processing power. In one embodiment, therefore, a federated
client/server model is used to provide scaling in order to
achieve high quality evaluation results within a reasonable
time period.

FIG. 5 is a symbolic diagram of training system 110. It
comprises a top-chain evolutionary coordinator (EC) 510,
which is also sometimes referred to herein as the master EC.
Top-chain EC 510 maintains the master candidate pool 512.

Down-chain from the top-chain EC 510 is a set of
mid-chain EC’s 520-1 through 520-6 (collectively 520).
Specifically, mid-chain EC’s 520-1 through 520-3 are imme-
diately down-chain from top-chain EC 510. Mid-chain EC
520-4 is immediately down-chain from mid-chain EC 520-2,
and mid-chain EC’s 520-5 and 520-6 are each immediately
down-chain from mid-chain EC 520-3. Each of the mid-

US 9,466,023 Bl

11

chain EC’s 520 maintains its own local candidate pool 522-1
through 522-6, respectively (collectively 522).

Down-chain from the mid-chain EC’s 520 are a plurality
of evolutionary engines (EE’s) 530-1 through 530-9 (col-
lectively 530). Specifically, EE 530-1 is immediately down-
chain from top-chain EC 510, and EE’s 530-2 and 530-3 are
each immediately down-chain from mid-chain EC 520-1.
EE 530-4 is immediately down-chain from mid-chain EC
520-2, and EE’s 530-5 and 530-6 are each immediately
down-chain from mid-chain EC 520-4. EE’s 530-7 and
530-8 are each immediately down-chain from mid-chain
EEC 520-5, and EE 530-9 is immediately down-chain from
mid-chain EEC 520-6. Like the EC’s 520, each of the EE’s
530 maintains its own local candidate pool 532-1 through
532-6, respectively (collectively 532).

Each EE 530 further has a communication port through
which it can access one or more data feed servers 540, which
retrieve and forward training samples from the training
database 114. Alternatively, although not shown, the training
samples may be supplied from data feed server 540 to the
EE’s 530 via one or more of the EC’s 520. The data feed
server 540 can also be thought of as simply a port through
which the data arrives or is retrieved. Each of the EC’s 510
and 520 maintains a local record of the IP address and port
number at which each of its immediate down-chain units
receives individuals delegated for evaluation, and delegating
an individual to a particular one of the down-chain units for
evaluation involves transmitting the individual (or an iden-
tification of the individual) toward the IP address and port
number of the particular unit.

The EE’s 530, and in some embodiments one or more of
the EC’s 520 as well, are volunteers in the sense that they
can come and go without instruction from the up-chain
neighboring units. When an EC 520 joins the arrangement,
it receives the IP address and port number of its immediately
up-chain neighbor, and the minimum experience level
acceptable to the up-chain neighbor for candidates being
sent up from the new EC 520. EE’s 530 joining the arrange-
ment receive that information plus the IP address and port
number of data feed server 540. This information can be sent
by any server that manages the hierarchy of evolutionary
units in the system. In one embodiment that can be the
top-chain evolutionary coordinator 510, whereas in another
embodiment it can be a separate dedicated management
server (not shown).

As used herein, the terms down-chain and up-chain are
complimentary: if a second unit is down-chain from a first
unit, then the first unit is up-chain from the second unit, and
vice-versa. In addition, the terms “immediately” up-chain
and “immediately” down-chain preclude an intervening evo-
Iutionary unit, whereas the terms up-chain and down-chain
themselves do not. Even “immediately”, however, does not
preclude intervening components that are not evolutionary
units. Also as used herein, the term “evolutionary unit”
includes both evolutionary coordinators and evolutionary
engines, and the term “evolutionary coordinator” includes
both mid-chain evolutionary coordinators and the top-chain
evolutionary coordinator.

In broad overview, all the work in testing of candidate
individuals on training data is performed by the EE’s 530.
The EE’s also generate their own initial sets of individuals,
enforce competition among the individuals in their own
respective candidate pools 532, and evolve their best per-
forming candidates by procreation. The EC’s, on the other
hand, perform no testing. Instead they merely coordinate the
activities of their respective down-chain units. Each evolu-
tionary unit that has an up-chain neighbor reports up its best

10

15

20

25

30

35

40

45

50

55

60

65

12

performing candidates to its up-chain EC, and also receives
additional candidates from its up-chain EC for further test-
ing. Each evolutionary unit that has a down-chain neighbor
(i.e. each EC in FIG. 5) receives individuals from its
respective down-chain units which the down-chain units had
considered top performers, and requires the received indi-
viduals to compete for entry into the EC’s own local
candidate pool 522. If a received candidate is one which the
EC had previously sent down to the down-chain unit for
further testing, then the EC first updates its local under-
standing of the fitness of the individual prior to the compe-
tition. Each EC also sends down candidates from its own
local pool for further testing as required. At various times,
like the EE’s, each EC harvests individuals from its own
local pool which the EC considers to be its top performers.
If the EC is a mid-chain EC 520, then it sends its harvested
individuals to its up-chain EC, which may be the top-chain
EC 510 or another mid-chain EC 520. If the EC is the
top-chain EC 510, then it sends its harvested individuals for
deployment.

It can be seen from FIG. 5 that the branches of the
hierarchy of EC’s can be very non-uniform in length and
spread. A given branch can contain as few as zero mid-chain
EC’s 520, or as many as ten or more in a given embodiment.
A given EC also can support as few as one down-chain unit
or as many as ten or more, and some can be EE’s 530 while
others are other mid-chain EC’s 520. This flexibility is
facilitated by the rule that each evolutionary unit appears to
its immediately up-chain neighboring unit, if it has one, as
if it were an evolutionary engine; and appears to its imme-
diately down-chain neighboring units, if it has any, as if it
were a top-chain evolutionary coordinator.

Moreover, each of the evolutionary units in FIG. 5 can
itself be a cluster of machines rather than just one. It can also
be physical or virtual or, in the case of a cluster, partially
physical and partially virtual. As a cluster, an evolutionary
unit still appears to its up-chain and down-chain units as a
single evolutionary engine or evolutionary coordinator as
desired, so that the up-chain and down-chain units do not
need to know that it is not a simple computer system. For
example, one of the mid-chain coordinators can itself be
made up of its own internal hierarchy of a top-chain coor-
dinator and one or more mid-chain coordinators, thereby
forming a nested arrangement. Similarly, an evolutionary
engine can be made up of its own internal hierarchy of units,
such as an internal top-chain coordinator up-chain of one or
more internal evolutionary engines, with or without a level
of internal mid-chain coordinators.

Still further, in the embodiment of FIG. 5, each evolu-
tionary unit has only one immediately up-chain unit. This is
so that when a unit harvests an individual and forwards it
up-chain, it will not improperly return the individual to an
up-chain unit different from the one that delegated it.
Another embodiment may have no such restriction, allowing
a given evolutionary unit to have more than one immediately
up-chain unit. For example, this might be accomplished by
associating, with each individual delegated to another unit in
the hierarchy, an indication of the unit to which it should be
returned after testing. For new individuals created by a unit
having more than one immediately up-chain unit (or created
by a unit down-chain from a unit having more than one
immediately up-chain unit), the arrangement can implement
some predetermined algorithm (e.g. a single default, round
robin, or random) for determining to which up-chain unit the
individual should be sent after testing and harvesting.
Numerous additional variations will be apparent to the
reader.

US 9,466,023 Bl

13

In the arrangement of FIG. 5, scaling is carried out in two
dimensions, namely in pool size as well as in evaluation of
the same individual to generate a more diverse candidate
pool so as to increase the probability of finding fitter
individuals. The candidate pool is distributed over a multi-
tude of EE’s 530 for evaluation. Each EE evaluates its own
local candidate pool using data from training database 114,
and individuals that satisfy one or more predefined condi-
tions on an EE 530 are transmitted up-chain to form part of
the candidate pool in its up-chain EC.

Distributed processing of individuals also may be used to
increase the speed of evaluation of a given individual. To
achieve this, individuals that are returned to an EC after
some testing, but additional testing is desired, may be sent
back (delegated) from the EC to a multitude of down-chain
units for further evaluation. The evaluation result achieved
by the down-chain units (sometimes referred to herein as
partial evaluation) for an individual is transferred back to the
delegating EC. The EC merges the partial evaluation results
of an individual with that individual’s fitness estimate at the
time it was delegated to arrive at an updated fitness estimate
for that individual as regards the EC’s local candidate pool.
For example, assume that an individual has been tested on
500 samples and is sent from a particular EC to, for example,
two down-chain units (which may be an EE 530 or another
mid-chain EC 522, or one of each), each instructed to test the
individual on 100 additional samples. Each of the down-
chain units further tests the individual on the additional 100
samples (the mid-chain EC 520 further delegating that task
to its further down-chain units), and reports its own view of
the fitness estimate to the requesting up-chain particular EC.
The particular EC, having received back the individual with
the requested additional testing experience, combines these
two estimates with the individual’s fitness estimate at the
time it was sent to the two down-chain units, to calculate an
updated fitness estimate for the individual as viewed by the
particular EC. The combined results represent the individu-
al’s fitness evaluated over 700 days. In other words, the
distributed system, in accordance with this example,
increases the experience level of an individual from 500
samples to 700 samples using only 100 different training
samples at each evolutionary unit. A distributed system, in
accordance with the present invention, is thus highly scal-
able in evaluating its individuals.

In an embodiment, the top-chain EC 510 maintains
locally the master candidate pool. It is experience layered as
in FIG. 2, but it does not maintain any candidate individuals
below its layer L,. New individuals are created by evolu-
tionary engines 530, and they are not reported to the
top-chain EC 510 until they have been tested on sufficient
numbers of samples to qualify for the elitist pool 118 of the
top-chain EC 510.

Advantageously, EE’s 530 are enabled to perform indi-
vidual procreation locally, thereby improving the quality of
their individuals. Each EE 530 is a self-contained evolution
device, not only evaluating the individuals in its own pool,
but also creating new generations of individuals and moving
the evolutionary process forward locally. Thus EE’s 530
maintain their own local candidate pool which need not
match each other’s or that of any of the ECs. Since the EE’s
530 continue to advance with their own local evolutionary
process, their processing power is not wasted even if they
are not in constant communication with their up-chain
neighbors. Once communication is reestablished with the
up-chain neighbors, EE’s 530 can send in their fittest indi-
viduals up-chain and receive additional individuals from
their up-chain neighbors for further testing.

10

20

30

40

45

14

New individuals created by the EE’s 530, both during
initialization and by procreation, are not reported up-chain
until they have been tested on sufficient numbers of samples
to qualify for the elitist pool of the up-chain unit. The
number of individuals created by the EE’s 530 may vary
depending on the memory size and the CPU processing
power of the EE’s. An EE 530 may be, in addition to the
variations mentioned above, a laptop computer, a desktop
computer, a cellular/VoIP handheld computer or smart
phone, a tablet computer, distributed computer, or the like.
An example system may have hundreds of thousands of
EE’s 530, and an EE 530 may have on the order of 1000
individuals for evaluation.

FIG. 6 illustrates various modules that can be used to
implement the functionality of an evolutionary engine 530.
The EE’s local candidate pool 532 is also shown in the
drawing. Generally, solid lines indicate process flow, and
broken lines indicate data flow. The modules can be imple-
mented in hardware or software, and need not be divided up
in precisely the same blocks as shown in FIG. 6. Some can
also be implemented on different processor cores or com-
puters, or spread among a number of different processors or
computers. In addition, it will be appreciated that some of
the modules can be combined, operated in parallel or in a
different sequence than that shown in FIG. 6 without affect-
ing the functions achieved. Also as used herein, the term
“module” can include “sub-modules”, which themselves can
be considered herein to constitute modules. In particular, the
candidate testing module 612, competition module 614, and
procreation module 616 are also considered herein to be
sub-modules of a candidate pool processing module 620.
The blocks in FIG. 6 designated as modules can also be
thought of as flowchart steps in a method. These comments
also apply to FIGS. 7 and 8.

Though not required in all embodiments, in the embodi-
ment of FIG. 5, each of the evolutionary units 510, 520 and
530 implements its own local layered candidate pool as
described above with respect to FIG. 2. Unlike the top-chain
EC 510, EE’s 530 do maintain and develop in their local
candidate pools 532 candidates that are in the respective L,
layer, and do not prevent further testing of individuals that
have reached the top layer L, of the local candidate pool
532. Candidate pool 532 has multiple experience layers with
experience ranges that are below that of the first experience
layer (L) of the candidate pool of the EE’s immediately
up-chain EC 520. The candidate pool 532 has experience
layers with experience ranges extending consecutively from
zero up to and including at least L, of the EE 530’s
immediately up-chain EC 520. In one embodiment, the
experience layers in candidate pool 532 extend all the way
up to and including the experience range of the top layer L,
of the immediately up-chain EC 520. However, since EE’s
530 are often resource constrained, in the embodiment of
FIG. 5 a compromise is implemented. In the compromise,
the experience layers in candidate pool 532 in one or more,
or all, of the EE’s 530 in the embodiment of FIG. 5 extend
up to and including the experience range of the second layer
L, of the EE 530°s immediately up-chain EC 520. Said
another way, all of the experience layers in the candidate
pool 532, other than L. and L, of the candidate pool 532,
are within L, of the EE 530’s immediately up-chain EC 520.
At a minimum, preferably, the minimum experience level of
an EE 530°s L, is at least as high as the minimum experience
level of L, the EE 530°s immediately up-chain EC 520.

Individuals are harvested from all layers having a mini-
mum experience level that is at least as high as that of the
first layer L, of the immediately up-chain EC 520. If the

US 9,466,023 Bl

15

experience ranges of L (and L, |) do not match experience
ranges of layers in the immediately up-chain EC 520, then
the rule applied is that only individuals whose testing
experience level is at least as high as the minimum testing
experience level of L, of the immediately up-chain EC 520
can be harvested.

In the embodiment of FIG. 5, because the candidate pools
532 of the EE’s 530 maintain only one or two experience
layers at or above the lowest testing experience layer of their
immediately up-chain EC 520, and because candidates are
harvested and reported up to the up-chain EC 520 only from
those layers, it will be typical that any individuals that are
delegated back down to this EE 530 will have higher
experience levels than most layers in the EE 530. After a
battery of trials, these individuals will compete for a space
in the local candidate pool 532 only with individuals in
layers [.,and ;. , of the local candidate pool 532, which can
sometimes cover a very large range of testing experience.
Thus there is a significant likelihood that such individuals
will be competing with individuals that have far less testing
experience, a mismatch which experience layering is
intended to address. The mismatch is tolerated for EE’s 530
as a tradeoff for the resource-limited restriction on the
number of upper experience layers supported by EE’s 530.

Preferably the candidate pool 532 in the EE’s 530 are
implemented using linked lists, whereas the candidate pools
512 and 522 in the EC’s are implemented using a DBMS,
both as previously described.

Referring to FIG. 6, the candidate pool 532 is initialized
by pool initialization module 610, which creates an initial set
of candidate individuals in L, of the candidate pool 532.
These individuals can be created randomly, or by some other
algorithm, or in some embodiments a priori knowledge is
used to seed the first generation. In another embodiment,
individuals from prior runs can be borrowed to seed a new
run. At the start, all individuals are initialized with an
experience level of zero and a fitness estimate that is
undefined. Evolutionary engine 530 also receives candidate
individuals from an up-chain evolutionary coordinator 520
or 522 for further testing. These individuals all originated
from one of the evolutionary engines 530, which may be
different than the one to which it is now being sent. The
individual is received by candidate insertion module 622 and
inserted into the local candidate pool 532. These individuals
retain their experience & fitness estimates as received from
the up-chain evolutionary coordinator, and do not compete
with the other individuals in the local candidate pool 532
until after a battery of trials (which further refines their
fitness estimates and increases their experience levels prior
to the competition).

Candidate testing module 612 next proceeds to test the
population in the candidate pool 532 on the training data
114. Unlike the top-chain EC 510, the EE 530 tests all
individuals in the local candidate pool 532 (of which there
are none initially), not just those below the local top layer
L. Each individual undergoes a battery of tests or trials on
the training data 114, each trial testing the individual on one
sample 410. In another embodiment, one sample consists of
information about many securities rather than just one. In
one embodiment, each battery might consist of only a single
trial. Preferably, however, a battery of tests is much larger,
for example on the order of 1000 trials. In one embodiment,
at least the initial battery of tests includes at least ExpMin
(L,) trials for each individual, to enable the initial individu-
als to qualify for consideration for the first layer of the elitist
pool in local candidate pool 532. Note there is no require-
ment that all individuals undergo the same number of trials.

10

15

20

25

30

35

40

45

50

55

60

65

16

After the tests, candidate testing module 612 updates the
local fitness estimate associated with each of the individuals
tested.

In an embodiment, the fitness estimate may be an average
of the results of all trials of the individual. In this case the
“fitness estimate” can conveniently be indicated by two
numbers: the sum of the results of all trials of the individual,
and the total number of trials that the individual has expe-
rienced. The latter number may already be maintained as the
experience level of the individual. The fitness estimate at
any particular time can then be calculated by dividing the
sum of the results by the experience level of the individual.
In an embodiment such as this, “updating” of the fitness
estimate can involve merely adding the results of the most
recent trials to the prior sum. It will be appreciated that the
fitness estimate maintained in the local candidate pool 532
represents the individual’s fitness as viewed by the current
evolutionary engine 530. If the individual had been sent
down from a mid-chain EC 522 (rather than having been
formed originally by the EE 530), then that EC’s view of the
individual’s fitness may well differ. It is for this reason that
fitness is sometimes referred to herein as being a fitness
version that is “centric.” to one unit or another (i.e. as
viewed by that unit).

Next, competition module 614 updates the local candidate
pool 532 contents in dependence upon the updated fitness
estimates. The operation of module 614 is described in more
detail below, but briefly, the module considers individuals
from lower layers for promotion into higher layers, selects
individuals for discarding that do not meet the minimum
individual fitness of their target layer, and selects individuals
for discarding that have been replaced in a layer by new
entrants into that layer. Local candidate pool 532 is updated
with the revised contents. If an individual marked for
discarding had been delegated to the EE 530 for testing, then
its selection for discarding is reported back to the up-chain
delegating EC 510 or 520 before being deleted from the
local candidate pool 532. If not, then it is simply deleted
from the local candidate pool 532.

After the candidate pool 532 has been updated, a procre-
ation module 616 evolves a random subset of them. Only
individuals in the local elitist pool (i.e. above layer L) are
permitted to procreate. Any conventional or future-devel-
oped technique can be used for procreation. In an embodi-
ment, conditions, outputs, or rules from parent individuals
are combined in various ways to form child individuals, and
then, occasionally, they are mutated. The combination pro-
cess for example may include crossover—i.e., exchanging
conditions, outputs, or entire rules between parent individu-
als to form child individuals. New individuals created
through procreation begin with an experience level of zero
and with a fitness estimate that is undefined. These indi-
viduals are placed in L, of the local candidate pool 532.
Preferably, after new individuals are created by combination
and/or mutation, the parent individuals are retained. In this
case the parent individuals also retain their experience level
and fitness estimates, and remain in their then-current local
elitist pool layers. In another embodiment, the parent indi-
viduals are discarded.

After procreation, candidate testing module 612 operates
again on the updated candidate pool 532. The process
continues repeatedly.

Sometime after the top layer of the local candidate pool
532 is full, individuals can be harvested for forwarding to
the EE’s up-chain EC. Candidate harvesting module 618
retrieves individuals for that purpose. In one embodiment,
candidate harvesting module 618 retrieves individuals peri-

US 9,466,023 Bl

17

odically, whereas in another embodiment it retrieves indi-
viduals only in response to user input. Preferably the can-
didate harvesting module 618 maintains a list of individuals
ready for reporting up. It awakens periodically, and forwards
all the individuals on the list up-chain. As mentioned,
candidate harvesting module 618 preferably selects only
from the layer or layers in the local candidate pool 532
whose minimum experience levels are at least as high as the
minimum experience level of the lowest level (L,) main-
tained by the immediately up-chain EC 510 or 520 (or only
from among those individuals with at least as high an
experience level). Candidate harvesting module 618 also can
apply further selection criteria as well in order to choose
desirable individuals.

FIG. 7 illustrates various modules that can be used to
implement the functionality of a mid-chain evolutionary
coordinator 520. The EC’s local candidate pool 522 is also
shown in the drawing. Most of the modules shown in FIG.
7 can in some embodiments operate asynchronously from
each other.

As with the evolutionary engines 530, mid-chain evolu-
tionary coordinators 520 also implement a respective local
layered candidate pool as described above with respect to
FIG. 2. The number of layers in the elitist pool, and the
minimum and maximum experience levels of such layers,
need not be the same in all the mid-chain EC’s, nor need
they be the same as those in the evolutionary engines 530,
which also need not be the same as each other. Preferably,
though, they span a generally higher set of experience levels
than the immediately down-chain unit. Like the top-chain
EC 510, the local candidate pool 522 of a mid-chain EC 520
does not maintain any candidates in its respective L, but
like the EE’s 530, it does not prevent further testing of
candidates in its top layer L.

More specifically, the local candidate pool 522 of each
mid-chain evolutionary coordinator 520 maintains multiple
experience layers within the testing experience range of its
immediately up-chain unit’s L, and also maintains experi-
ence layers having testing experience ranges extending
upward to and including that of the immediately up-chain
unit’s L,. The testing experience layers have consecutively
increasing experience ranges from L, of the local candidate
pool 522 through L, of the local candidate pool. Another
embodiment could include experience layers with even
higher testing experience ranges, but this is typically unnec-
essary. In general, therefore, the minimum testing experi-
ence level of L, in the candidate pool 522 of each mid-chain
EC 520 is at least as high as the minimum testing experience
level of L, in the candidate pool of its immediately up-chain
EC, and thus is also at least as high as the minimum testing
experience level of L, in the candidate pool 512 of the
top-chain EC 510. Also, typically the minimum testing
experience level of L, of the local candidate pool 522
increases for EC’s 520 that are nearer in the hierarchy to the
top-chain EC 510, though this is not essential.

Like the EE’s 530, individuals are harvested from mid-
chain EC’s 520 only from the layer or layers in the local
candidate pool 522 whose minimum experience levels are at
least as high as the minimum experience level of the lowest
level (L.;) maintained by the immediately up-chain EC 510
or 520 (or only from among those individuals with at least
as high an experience level). Candidate harvesting module
618 also can apply further selection criteria as well in order
to choose desirable individuals.

Referring to FIG. 7, the candidate pool 522 receives
individuals both from the EC’s up-chain EC and from its
down-chain units. As mentioned, the mid-chain evolutionary

20

40

45

55

18

coordinators 520 do not perform any of their own testing of
candidate individuals, but instead coordinate the testing
performed by their down-chain units. Thus mid-chain EC
520 includes a candidate delegation module 712 which
selects individuals from its local candidate pool 522 for
further testing. The candidate delegation module 712 selects
the individuals using a round robin or random method, or
any algorithm which tries to increase the experience level of
all the individuals in the local candidate pool 522. The
candidate delegation module 712 does not need to actively
load-balance its down-chain units, since it only sends indi-
viduals down to a down-chain unit in response to a request
from the down-chain unit for more individuals to test. In fact
all communication in the arrangement of FIG. 5 is initiated
by the down-chain units (though a different embodiment
may operate differently).

Candidates being reported up from below are received by
an aggregation module 716. Once a candidate is sent to a
down-chain unit, the down-chain unit is required to report it
back, even if it failed a competition below and is marked for
discarding. Thus candidates received by aggregation module
716 are either individuals that failed below, in which case
the mid-chain EC 520 discards the individual from its own
local candidate pool 522, or individuals that survived their
tests below and are among the fittest individuals that were in
the down-chain unit’s local candidate pool. Of the latter
type, some may be returns of individuals that the EC 520 had
previously sent down for further testing, and others may
have originated from the down-chain unit or units. If an
individual is a return of one that the EC 520 had previously
sent down for further testing, then the aggregation module
716 aggregates the contribution that such further testing
makes to the overall EC-centric fitness estimate before
considering it for acceptance into the EC 520’s local can-
didate pool 522. The aggregation involves subtracting from
the experience level and fitness estimate reported for the
returned individual, the individual’s experience level and
fitness estimate as indicated in the snapshot received with
the returned individual, to arrive at the contribution made
down-chain to the individual’s training That contribution is
then merged into the EC 520°s own copy of the individual.

If the returned individual is either a new individual that
originated below, or a returned individual that is proposed
for acceptance into the EC 520’s local candidate pool 522,
the individual is required to compete for its place in the EC
520’s local candidate pool 522. The competition is per-
formed by competition module 714. As for the evolutionary
engines 530, the competition module 714 also considers
individuals from lower layers for promotion into higher
layers in the local candidate pool 522, discards individuals
that do not meet the minimum individual fitness of their
target layer, and discards individuals that have been replaced
in a layer by new entrants into that layer. Local candidate
pool 522 is updated with the revised contents.

Evolutionary coordinator 520 also receives candidate
individuals from its up-chain evolutionary coordinator 510
or 520 for further testing. These individuals are received by
a candidate insertion module 722 in the mid-chain EC 520,
but unlike the evolutionary engines 530, these individuals
compete for entry into the local candidate pool 522.
Received individuals arrive in conjunction with both their
fitness estimates and their testing experience levels, and
compete for entry into the EC 520’s local candidate pool 522
against only those individuals which occupy the same expe-
rience layer in the local candidate pool 522. The candidate
insertion module 722 also takes a snapshot of the received
individuals for returning to the up-chain unit if and when it

US 9,466,023 Bl

19

returns the individual after testing. As for the evolutionary
engines 530, the received candidates retain their experience
level and fitness estimates from above.

If one of the evolutionary units 520 or 530 receives from
its up-chain EC 510 or 520, an individual for evaluation
which it is already in the process of evaluating, then the
receiving evolutionary unit it simply ignores the delegation.
The receiving unit knows what individuals it is evaluating
because it maintains a list of them, and where they came
from, even if it has since further delegated evaluation to
other units down-chain. Though the receiving unit has been
told twice to evaluate the individual, the up-chain requestor
will not be confused by receiving only one resulting report.
The unit’s report informs the up-chain requestor not only of
the unit’s testing results, but also the number of trials that the
individual underwent under the control of the unit, and this
information is used in the merging process performed by the
requesting unit.

Sometime after the top layer of the local candidate pool
522 is full, individuals can be harvested for forwarding to
the EC’s own up-chain EC. Candidate harvesting module
718 retrieves individuals for that purpose. Preferably the
candidate harvesting module 718 maintains a list of indi-
viduals ready for reporting up. It awakens periodically, and
forwards all the individuals on the list up-chain. As men-
tioned, candidate harvesting module 718 preferably selects
only from the layer or layers in the local candidate pool 522
whose minimum experience levels are at least as high as the
minimum experience level of the lowest level (L,) main-
tained by the immediately up-chain EC 510 or 520 (or only
from among those individuals with at least as high an
experience level). Candidate harvesting module 718 also can
apply further selection criteria as well in order to choose
desirable individuals. If the individuals had previously been
received from the up-chain EC for testing, then candidate
harvesting module 718 also forwards the snapshot that it
took of the individual upon receipt.

FIG. 8 illustrates various modules that can be used to
implement the functionality of a top-chain evolutionary
coordinator 510. The top-chain EC’s local candidate pool
512 is also shown in the drawing, as is the production
population database 122. Most of the modules shown in
FIG. 8 can in some embodiments operate asynchronously
from each other.

As with the evolutionary engines 530 and mid-chain
evolutionary coordinators 520, the top-chain evolutionary
coordinator 510 also implements a local layered candidate
pool as described above with respect to FIG. 2. Again the
number of layers in the elitist pool, and the minimum and
maximum experience levels of such layers, need not be the
same as any or all of the down-chain units. Preferably,
though, they span a generally higher set of experience levels
than all the immediately down-chain units. Like the mid-
chain EC’s 520, top-chain EC 510 does not maintain any
individuals in L, though it does prevent further testing of
individuals in its top layer L.

More specifically, the local candidate pool 512 has mul-
tiple experience layers from its lowers layer L, to its highest
layer L. Typically L, of the top-chain EC 510 has a testing
experience range who’s minimum experience level is higher
than that of L, of each of the mid-chain EC’s 520, though it
could be equal in another embodiment. Individuals are
harvested from only L, of the top-chain EC 510.

The modules in the top-chain evolutionary coordinator
510 are similar to those in the mid-chain EC’s 520, except
there is no candidate insertion module for inserting any

40

45

50

55

20

individuals received from any up-chain neighbor. Instead, all
individuals in the local candidate pool 512 were reported up
from below.

Referring to FIG. 8, the candidate pool 512 receives
individuals from the EC’s down-chain units. Top-chain
evolutionary coordinator 510 does not perform any of its
own testing of candidate individuals, but instead coordinates
the testing performed by the down-chain units. Thus top-
chain EC 510 includes a candidate delegation module 812
which selects individuals from its local candidate pool 512
for further testing. The candidate delegation module 812
selects the individuals using any algorithm which tries to
increase the experience level of all the individuals in the
local candidate pool 512 other than those in the top layer L.
The candidate delegation module 812 does not need to
actively load-balance its down-chain units, since it only
sends individuals down to a down-chain unit in response to
a request from the down-chain unit for more individuals to
test.

Candidates being reported up from below are received by
an aggregation module 816. Similarly as described above for
the mid-chain units 520, once the top-chain evolutionary
coordinator 510 sends a candidate to a down-chain unit, the
down-chain unit is required to report it back, even if the
candidate failed a competition below and was discarded.
Thus candidates received by aggregation module 816 are
either individuals that failed below, in which case the
top-chain EC 510 discards the individual from its own local
candidate pool 512, or individuals that survived their tests
below and are among the fittest individuals that were in the
down-chain unit’s local candidate pool. Of the latter type,
some may be returns of individuals that the top-chain EC
510 had previously sent down for further testing, and others
may have originated from a down-chain EE 530. If an
individual is a return of one that the top-chain EC 510 had
previously sent down for further testing, then the aggrega-
tion module 816 aggregates the contribution that such fur-
ther testing makes to the overall EC-centric fitness estimate
before considering it for acceptance in to the top-chain EC
510’s local candidate pool 512. The aggregation methodol-
ogy described above for the mid-chain EC’s 520 can be used
for the top-chain EC 510 as well.

If the returned individual is either a new individual that
originated below, or a returned individual that is proposed
for acceptance into the top-chain EC 510°s local candidate
pool 512, the individual is required to compete for its place
in the EC 510’s local candidate pool 512. The competition
is performed by competition module 814. As for the evolu-
tionary engines 530 and mid-chain evolutionary coordina-
tors 520, the competition module 814 considers individuals
from lower layers for promotion into higher layers in the
local candidate pool 512, discards individuals that do not
meet the minimum individual fitness of their target layer,
and discards individuals that have been replaced in a layer
by new entrants into that layer. Local candidate pool 512 is
updated with the revised contents.

Sometime after the top layer of the local candidate pool
512 is full, candidate harvesting module 818 retrieves indi-
viduals for use in production. Candidate harvesting module
818 selects only from the top layer L in the local candidate
pool 512, and can apply further selection criteria as well in
order to choose desirable individuals. For example, it can
select only the fittest individuals from L, and/or only those
individuals that have shown low volatility. Other criteria will
be apparent to the reader. The individuals also typically
undergo further validation as part of this further selection
criteria, by testing on historical data not part of training data

US 9,466,023 Bl

21

114. The individuals selected by the candidate harvesting
module 518 are written to the production population data-
base 122 for use by production system 112 as previously
described.

Note that because the evolutionary engines 530 are vol-
unteer contributors to the system, they may go offline or lose
communication with their up-chain units at any time. This
may also be true of some mid-chain EC’s 520 in some
embodiments. Thus it is possible that some individuals that
an EC 510 or 520 sent down-chain for further testing will
never be returned to the sending EC. In this case the prior
copy of the individual, retained by the EC, remains in place
in its local candidate pool unless and until it is displaced
through competition in the EC. Still further, note that an
individual retained in an EC after it has also been sent to a
down-chain unit for further testing, may become displaced
and deleted from the EC through competition in the EC. In
this case, if the same individual is returned by the down-
chain unit, the EC simply ignores it.

As mentioned, competition modules 614, 714 and 814
manage the graduation of individuals from lower layers in
the respective local candidate pool 532, 522 or 512, up to
higher layers. This process can be thought of as occurring
one individual at a time, as follows. First, a loop is begun
through all individuals in the local candidate pool whose
experience level has changed since the last time the com-
petition module was executed. If the current individual’s
experience level has not increased sufficiently to qualify it
for the next experience layer in the candidate pool, then the
individual is ignored and the next one is considered. If the
current individual’s experience level has increased suffi-
ciently to qualify it for a new experience layer, then the
competition module determines whether the target experi-
ence layer is already at quota. If not, then the individual is
simply moved into that experience level. If the target layer
is full, then the competition module determines whether the
fitness estimate of the current individual exceeds that of the
least fit individual in the target layer. If so, then the least fit
individual is discarded, and the current individual is moved
up into the target layer. If not, then the current individual is
discarded. The process then moves on to consider the next
individual in sequence. Note that while individuals typically
move up by only one experience layer at a time, that is not
requirement in all embodiments. In some embodiments,
such as where the top-chain EC 510 has received back an
individual that has been tested on multiple batteries of trials
under the governance of various mid-chain EC’s 520, it may
happen that a particular individual is not considered for
advancement within the local candidate pool until after its
experience level has increased sufficiently for it to jump past
one or more experienced layers.

In an evolutionary unit that enforces an elitist pool
minimum fitness (typically all of the EC’s 510 and 520 in the
embodiment of FIG. 5), the step in which the fitness estimate
of the current individual is compared to the minimum fitness
of the target layer, can further include a test of whether the
current individual’s fitness estimate satisfies the elitist pool
minimum fitness. Typically this latter test is applied only on
individuals entering [, in the particular evolutionary unit,
but as mentioned previously, could be applied to individuals
being considered for other layers in the local candidate pool
as well. If the current individual does not satisfy the elitist
pool minimum fitness, then it is discarded.

The above routine processes individuals sequentially, and
different embodiments can implement different sequences
for processing the individuals. Note that the processing
sequence can affect the results if, for example, an individual

10

15

20

25

30

35

40

45

50

55

60

65

22

in layer L, is being considered for layer L,, | at the same time
that an individual in layer L,_, is being considered for layer
L,. If the former test occurs first, then a hole will be opened
in layer [, and the individual graduating from layer L,_, will
be promoted into layer L, automatically. If the latter test
occurs first, then the individual graduating from layer L,_,
will have to compete for its place in layer L, (assuming layer
L, is at quota). In another embodiment, individuals are
considered layer by layer either according to their target
layer after promotion, or according to their current layer
prior to promotion. Again, the sequence of individuals to
consider within each layer will depend on the embodiment,
as will the sequence in which the layers themselves are
considered.

Different evolutionary units can implement different com-
petition algorithms. FIG. 9 illustrates a bulk-oriented
method of operation of competition module 614, 714 or 8§14
(614 for example). In the embodiment of FIG. 9, the layers
in the candidate pool 532 are dishanded and reconstituted
each time the competition module 614 executes. These
executions of competition module 614 are sometimes
referred to herein as competition “events”, and each com-
parison made between the fitness estimate of one individual
and that of another is sometimes referred to herein as a
comparison “instance”.

In step 910, all the individuals in candidate pool (532 for
competition module 614) are stratified into their experience
layers. In step 911, all individuals whose experience level is
still within that of L, in candidate pool 532, are assigned
automatically to L,. In step 912, within each experience
layer L,-L, the individuals are ranked according to their
fitness estimates. In step 914, of those individuals whose
experience level is at least equal to the minimum experience
level of the top layer of the elitist pool in candidate pool 532,
the Quota(L;) fittest are assigned to L;. Note that this step
could exclude some individuals with top layer experience, as
individuals coming up from layer L, | can supplant less fit
individuals that were previously in L.

Step 916 implements the policy that once L, is full, no
individuals are allowed into the elitist pool in candidate pool
532 unless they are at least as fit as some predetermined
function f() of the top layer minimum fitness. In step 916,
therefore, if L, in candidate pool 532 is full, all individuals
graduating from L, to L., whose fitness estimate is less than
f(FitMin(LL;)) are discarded. Variations of step 916 to imple-
ment variations of the elitist pool minimum fitness policy,
will be apparent. In step 918, for each layer L, below the top
layer L, all the individuals in the elitist pool having
experience level within the range associated with layer L; are
considered. Of these individuals, only the Quota(l,,) fittest
individuals are assigned to layer L,. In step 920, all indi-
viduals remaining in elitist pool in candidate pool 532 which
were not assigned to specific layers in steps 911, 914 or 918,
are discarded.

As used herein, a phrase such as “only the five fittest
individuals”, need not necessarily fill all five places. That is,
if there are only three individuals to consider, the phrase is
satisfied if all three individuals are assigned places. Thus it
can be seen that step 918 includes both a policy that
individuals entering a layer that is already at quota must
compete for their place in that layer, as well as a policy that
individuals entering a layer that is not yet full are promoted
to that layer automatically. It can also be seen that steps 918
and 920 together implement a policy that fitness compari-
sons are made only among individuals having roughly the
same experience.

US 9,466,023 Bl

23

Example Sequence

Given the above principles, the following is an example
sequence of steps that might occur in the arrangement of
FIG. 5 as individuals are created, tested, subjected to com-
petition, evolved, and eventually harvested. Many steps are
omitted as the system operates on numerous individuals and
numerous evolutionary not mentioned herein. Many steps
are omitted also in between the steps set forth, for purposes
of clarity. In addition, for purposes of clarity several of the
evolutionary units in FIG. 5 are referred to by shorthand
abbreviations EC1, EC2, EC4, EE2, EE3, EE4, EE5, EE6
and TEC, all as indicated in FIG. 5.

EE2 creates candidates, including Individual #1, writes to
local candidate pool

EE2 tests the candidates in local candidate pool, including
discarding some through local competition, procreating to
make new candidates, and creating new candidates ran-
domly

Individual #1 reaches top layer in local candidate pool

EE2 transmits candidates from top layer, including Indi-
vidual #1 and EE2’s view of Individual #1°s fitness level, to
mid-chain EC1

EC1 accepts Individual #1 after competition against other
candidates in EC1’s local candidate pool. EC1’s view of
Individual #1°s fitness level is now equal to EE2’s view of
Individual #1°s fitness level. EC1 writes Individual #1 into
L1 of local candidate pool with EC1’s view of Individual
#1’s fitness level

EC1 receives request from EE2 for candidates to test.

EC1 transmits candidates, including Individual #1, to EE2
for further testing.

EE2 inserts Individual #1 into EE2’s local candidate pool.

EE2 tests the candidates in its local candidate pool,
including Individual #1, including discarding some through
local competition, procreating to make new candidates, and
creating new candidates randomly. Individual #1 survives
the completion.

Before receiving back Individual #1 from EE2, EC1
receives request from EE3 for candidates to test.

EC1 transmits candidates, again including Individual #1,
to EE3 for further testing.

EE3 inserts Individual #1 into EE3’s local candidate pool.

EE3 tests the candidates in its local candidate pool,
including Individual #1, including discarding some through
local competition, procreating to make new candidates, and
creating new candidates randomly. Individual #1 survives.

Individual #1 reaches top layer in EE2’s local candidate
pool

EE2 transmits candidates from top layer, including Indi-
vidual #1, to EC1 with its own view of Individual #1’s
updated fitness level.

EC1 accepts Individual #1 after competition against other
candidates in EC1’s local candidate pool. Writes Individual
#1 into experience-appropriate layer of local candidate pool.
Merges EE2’s view of Individual #1’s fitness level with
EC1’s view and writes updated view of Individual #1’s
fitness level into EC1’s local candidate pool.

Individual #1 reaches top layer in EE3’s local candidate
pool

EE3 transmits candidates from top layer, including Indi-
vidual #1, to EC1 with its own view of Individual #1’s
updated fitness level.

EC1 accepts Individual #1 after competition against other
candidates in EC1’s local candidate pool. Writes Individual
#1 into experience-appropriate layer of local candidate pool.
Merges EE3’s view of Individual #1’s fitness level with

10

15

20

25

30

35

40

45

50

55

60

65

24

EC1’s view and writes updated view of Individual #1’s
fitness level into EC1’s local candidate pool.

EC1 sends request to top-chain TEC for candidates to test.

TEC transmits candidates, including Individual #2, to
EC1 for further testing.

EC1 accepts Individual #2 after competition against other
candidates in EC1’s local candidate pool.

EC1 continues to coordinate further testing of the candi-
dates in its local candidate pool, including Individual #1 and
Individual #2, including delegating testing of Individual #1
and/or Individual #2 to EE2 and/or EE3, receiving them
back after testing with new fitness estimates as viewed by
EE2 and/or EE3, and discarding some through local com-
petition with other candidates in EC1’s local candidate pool.

Individual #1 and Individual #2 reach top layer in EC1’s
local candidate pool.

EC1 transmits candidates from top layer, including Indi-
vidual #1 and Individual #2, to TEC with EC1’s view of
Individual #1°s and Individual #2’s updated fitness levels.

TEC accepts Individual #1 and Individual #2 after com-
petition against other candidates in TEC local candidate
pool. Writes Individual #1 and Individual #2 into [.1 of local
candidate pool. Merges EC1’s view of Individual #2’s
fitness level with TEC’s view and writes updated view of
Individual #2’s fitness level into TEC’s local candidate pool.
Since Individual #1 is new to TEC, TEC’s view of Indi-
vidual #1’s fitness level is now equal to EC1’s view of
Individual #1’s fitness level.

Mid-chain EC2 sends request to top-chain TEC for can-
didates to test.

TEC transmits candidates, including Individual #1, to
EC2 for further testing.

EC2 accepts Individual #1 after competition against other
candidates in EC2’s local candidate pool.

Mid-chain EC4 sends request to EC2 for candidates to
test.

EC2 transmits candidates, including Individual #1, to
EC4 for further testing.

EC4 accepts Individual #1 after competition against other
candidates in EC4’s local candidate pool.

EES5 sends request to EC4 for candidates to test.

EES transmits candidates, including Individual #1, to EES
for further testing.

EES5 inserts Individual #1 into EES’s local candidate pool.

EE5 tests the candidates in its local candidate pool,
including Individual #1, including discarding some through
local competition, procreating to make new candidates, and
creating new candidates randomly

Individual #1 reaches top layer in EE5’s local candidate
pool

EES transmits candidates from top layer, including Indi-
vidual #1, to EC4 with its own view of Individual #1’s
updated fitness level.

EC4 accepts Individual #1 after competition against other
candidates in EC4’s local candidate pool. Merges EES’s
view of Individual #1’s fitness level with EC4’s view and
writes updated view of Individual #1’s fitness level into
EC4’s local candidate pool.

EC4 continues to coordinate further testing of the candi-
dates in its local candidate pool, including Individual #1,
including delegating testing of Individual #1 to EE5 and/or
EE6, receiving them back after testing with new fitness
estimates as viewed by EE5 and/or EE6, and discarding
some through local competition with other candidates in
EC4’s local candidate pool.

Individual #1 reaches top layer in EC4’s local candidate
pool.

US 9,466,023 Bl

25

EC4 transmits candidates from top layer, including Indi-
vidual #1, to EC2 with EC4’s view of Individual #1’s
updated fitness levels.

EC2 accepts Individual #1 after competition against other
candidates in EC2’s local candidate pool. Writes Individual
#1 into appropriate layer of local candidate pool. Merges
EC4’s view of Individual #1°s fitness level with EC2’s view
and writes updated view of Individual #1°s fitness level into
EC2’s local candidate pool.

EC2 continues to coordinate further testing of the candi-
dates in its local candidate pool, including Individual #1,
including delegating testing of Individual #1 to EE4 and/or
EC4, receiving them back after testing with new fitness
estimates as viewed by EE4 and/or EC4, and discarding
some through local competition with other candidates in
EC2’s local candidate pool.

EC2 transmits candidates from top layer, including Indi-
vidual #1, to TEC with EC2’s view of Individual #1’s
updated fitness levels.

TEC accepts Individual #1 after competition against other
candidates in TEC’s local candidate pool. Writes Individual
#1 into experience-appropriate layer of local candidate pool.
Merges EC2’s view of Individual #1’s fitness level with
TEC’s view and writes updated view of Individual #1’s
fitness level into TEC’s local candidate pool.

Individual #1 reaches top layer in TEC’s local candidate
pool.

Individual #1 is harvested for production population.
Computer Hardware

FIG. 10 is a simplified block diagram of a computer
system 1010 that can be used to implement any or all of the
evolutionary units 510, 520 and 530, the production system
112, and the data feed server 540. While FIGS. 6-9 indicate
individual components for carrying out specified operations,
it will be appreciated that each component actually causes a
computer system such as 1010 to operate in the specified
manner.

Computer system 1010 typically includes a processor
subsystem 1014 which communicates with a number of
peripheral devices via bus subsystem 1012. These peripheral
devices may include a storage subsystem 1024, comprising
a memory subsystem 1026 and a file storage subsystem
1028, user interface input devices 1022, user interface
output devices 1020, and a network interface subsystem
1016. The input and output devices allow user interaction
with computer system 1010. Network interface subsystem
1016 provides an interface to outside networks, including an
interface to communication network 1018, and is coupled
via communication network 1018 to corresponding interface
devices in other computer systems. For the evolutionary
units 510, 520 and 530, communication with the unit’s
up-chain and down-chain units occurs via communication
network 1018. Communication network 1018 may comprise
many interconnected computer systems and communication
links. These communication links may be wireline links,
optical links, wireless links, or any other mechanisms for
communication of information. While in one embodiment,
communication network 1018 is the Internet, in other
embodiments, communication network 1018 may be any
suitable computer network or combination of computer
networks.

The physical hardware component of network interfaces
are sometimes referred to as network interface cards (NICs),
although they need not be in the form of cards: for instance
they could be in the form of integrated circuits (ICs) and
connectors fitted directly onto a motherboard, or in the form

10

15

20

25

30

35

40

45

50

55

60

65

26

of macrocells fabricated on a single integrated circuit chip
with other components of the computer system.

User interface input devices 1022 may include a key-
board, pointing devices such as a mouse, trackball, touch-
pad, or graphics tablet, a scanner, a touch screen incorpo-
rated into the display, audio input devices such as voice
recognition systems, microphones, and other types of input
devices. In general, use of the term “input device” is
intended to include all possible types of devices and ways to
input information into computer system 1010 or onto com-
puter network 1018.

User interface output devices 1020 may include a display
subsystem, a printer, a fax machine, or non-visual displays
such as audio output devices. The display subsystem may
include a cathode ray tube (CRT), a flat-panel device such as
a liquid crystal display (LCD), a projection device, or some
other mechanism for creating a visible image. The display
subsystem may also provide non-visual display such as via
audio output devices. In general, use of the term “output
device” is intended to include all possible types of devices
and ways to output information from computer system 1010
to the user or to another machine or computer system. In
particular, an output device of the computer system 1010 on
which production system 112 is implemented, may include
a visual output informing a user of action recommendations
made by the system, or may include a communication device
for communicating action signals directly to the controlled
system 128. Additionally or alternatively, the communica-
tion network 1018 may communicate action signals to the
controlled system 128. In the financial asset trading envi-
ronment, for example, the communication network 1018
transmits trading signals to a computer system in a broker-
age house which attempts to execute the indicated trades.

Storage subsystem 1024 stores the basic programming
and data constructs that provide the functionality of certain
embodiments of the present invention. For example, the
various modules implementing the functionality of certain
embodiments of the invention may be stored in storage
subsystem 1024. These software modules are generally
executed by processor subsystem 1014. Storage subsystem
1024 also stores the candidate pools 512, 522 or 532, as the
case may be, for a respective evolutionary unit. For the data
feed 540 storage subsystem 1024 may store the training
database 114. For the top-chain EC 510 and/or for produc-
tion system 112, storage subsystem 1024 may store the
production population 122. Alternatively, one or more of
such databases can be physically located elsewhere, and
made accessible to the computer system 1010 via the
communication network 1018.

Memory subsystem 1026 typically includes a number of
memories including a main random access memory (RAM)
1030 for storage of instructions and data during program
execution and a read only memory (ROM) 1032 in which
fixed instructions are stored. File storage subsystem 1028
provides persistent storage for program and data files, and
may include a hard disk drive, a floppy disk drive along with
associated removable media, a CD ROM drive, an optical
drive, or removable media cartridges. The databases and
modules implementing the functionality of certain embodi-
ments of the invention may have been provided on a
computer readable medium such as one or more CD-ROMs,
and may be stored by file storage subsystem 1028. The host
memory 1026 contains, among other things, computer
instructions which, when executed by the processor subsys-
tem 1014, cause the computer system to operate or perform
functions as described herein. As used herein, processes and
software that are said to run in or on “the host” or “the

US 9,466,023 Bl

27

computer”’, execute on the processor subsystem 1014 in
response to computer instructions and data in the host
memory subsystem 1026 including any other local or remote
storage for such instructions and data.

As used herein, a computer readable medium is one on
which information can be stored and read by a computer
system. Examples include a floppy disk, a hard disk drive,
a RAM, a CD, a DVD, flash memory, a USB drive, and so
on. The computer readable medium may store information in
coded formats that are decoded for actual use in a particular
data processing system. A single computer readable
medium, as the term is used herein, may also include more
than one physical item, such as a plurality of CD ROMs or
a plurality of segments of RAM, or a combination of several
different kinds of media. As used herein, the term does not
include mere time varying signals in which the information
is encoded in the way the signal varies over time.

Bus subsystem 1012 provides a mechanism for letting the
various components and subsystems of computer system
1010 communicate with each other as intended. Although
bus subsystem 1012 is shown schematically as a single bus,
alternative embodiments of the bus subsystem may use
multiple busses.

Computer system 1010 itself can be of varying types
including a personal computer, a portable computer, a work-
station, a computer terminal, a network computer, a televi-
sion, a mainframe, a server farm, a widely-distributed set of
loosely networked computers, or any other data processing
system or user device. Due to the ever-changing nature of
computers and networks, the description of computer system
1010 depicted in FIG. 10 is intended only as a specific
example for purposes of illustrating the preferred embodi-
ments of the present invention. Many other configurations of
computer system 1010 are possible having more or less
components than the computer system depicted in FIG. 10.

As used herein, a given signal, event or value is “respon-
sive” to a predecessor signal, event or value if the prede-
cessor signal, event or value influenced the given signal,
event or value. If there is an intervening processing element,
step or time period, the given signal, event or value can still
be “responsive” to the predecessor signal, event or value. If
the intervening processing element or step combines more
than one signal, event or value, the signal output of the
processing element or step is considered “responsive” to
each of the signal, event or value inputs. If the given signal,
event or value is the same as the predecessor signal, event
or value, this is merely a degenerate case in which the given
signal, event or value is still considered to be “responsive”
to the predecessor signal, event or value. “Dependency” of
a given signal, event or value upon another signal, event or
value is defined similarly.

Applicants hereby disclose in isolation each individual
feature described herein and each combination of two or
more such features, to the extent that such features or
combinations are capable of being carried out based on the
present specification as a whole in light of the common
general knowledge of a person skilled in the art, irrespective
of whether such features or combinations of features solve
any problems disclosed herein, and without limitation to the
scope of the claims. Applicants indicate that aspects of the
present invention may consist of any such feature or com-
bination of features. In view of the foregoing description it
will be evident to a person skilled in the art that various
modifications may be made within the scope of the inven-
tion.

The foregoing description of preferred embodiments of
the present invention has been provided for the purposes of

25

35

40

45

50

55

60

65

28

illustration and description. It is not intended to be exhaus-
tive or to limit the invention to the precise forms disclosed.
Obviously, many modifications and variations will be appar-
ent to practitioners skilled in this art. In particular, and
without limitation, any and all variations described, sug-
gested or incorporated by reference in the Background
section or the Cross References section of this patent appli-
cation are specifically incorporated by reference into the
description herein of embodiments of the invention. In
addition, any and all variations described, suggested or
incorporated by reference herein with respect to any one
embodiment are also to be considered taught with respect to
all other embodiments. The embodiments described herein
were chosen and described in order to best explain the
principles of the invention and its practical application,
thereby enabling others skilled in the art to understand the
invention for various embodiments and with various modi-
fications as are suited to the particular use contemplated. It
is intended that the scope of the invention be defined by the
following claims and their equivalents.

The invention claimed is:
1. A data mining arrangement, for use with a data mining
training database containing training data, comprising a
subject processing unit,
for use with a plurality of processing units including a first
unit disposed up-chain from the subject unit, and a
plurality of client units including a particular one of the
client units disposed down-chain from the subject unit,

wherein the subject unit includes a subject processor and
a subject memory, the subject memory storing a local
pool of candidate individuals, each of the candidate
individuals identifying at least one classification rule
and further identifying a respective fitness estimate
centric to the subject unit,

and wherein the subject processor is configured to:

store in the subject memory individuals received by the
subject unit from the first unit, for evaluation against
a portion of the training data,

delegate, to the particular client unit, evaluation of
individuals from the subject unit’s local pool of
candidate individuals,

update the fitness estimates, centric to the subject unit,
for selected ones of individuals received back from
the particular client unit after testing, in dependence
upon the results of such testing, and

report to the first unit, selected individuals from the
subject memory in conjunction with the individuals’
fitness estimates, centric to the subject unit.

2. The arrangement of claim 1, for use further where the
plurality of client units further includes an additional client
unit,

wherein the subject processor is further configured to:

delegate, to the additional client unit, evaluation of
individuals from the subject unit’s local pool of
candidate individuals,

update the fitness estimates, centric to the subject unit,
for selected ones of individuals received back from
the additional client unit after testing, in dependence
upon the results of such testing.

3. The arrangement of claim 2, wherein one of the
individuals that the subject processor delegates to the par-
ticular client unit is the same as one of the individuals that
the subject processor delegates to the additional client unit.

4. The arrangement of claim 1, further comprising an
additional unit which is among the plurality of processing

US 9,466,023 Bl

29

units, the additional unit being disposed down-chain from
the first unit and up-chain from an additional one of the
client units,
wherein the additional unit includes an additional proces-
sor and an additional memory, the additional memory
storing an additional local pool of candidate individu-
als, each of the candidate individuals in the additional
memory identifying at least one classification rule and
further identifying a respective fitness estimate centric
to the additional unit,
and wherein the additional processor is configured to:
store in the additional memory individuals received by
the additional unit from the first unit, for evaluation
against a portion of the training data,
delegate, to the additional client unit, evaluation of
individuals from the additional unit’s local pool of
candidate individuals,
update the fitness estimates, centric to the additional
unit, for selected ones of individuals received back
from the additional client unit after testing, in depen-
dence upon the results of such testing, and
report to the first unit, selected individuals from the
additional memory in conjunction with the individu-
als’ fitness estimates, centric to the additional unit.
5. The arrangement of claim 1, further comprising the first
unit, for use further where the plurality of processing units
further includes a further unit, disposed up-chain from the
first unit,
wherein the first unit includes a first processor and a first
memory, the first memory storing a first local pool of
candidate individuals, each of the candidate individuals
in the first memory identifying at least one classifica-
tion rule and further identifying a respective fitness
estimate centric to the first unit,
and wherein the first processor is configured to:
store in the first memory individuals received by the
first unit from the further unit, for evaluation against
a portion of the training data,
delegate, to the subject unit, evaluation of individuals
from the first unit’s local pool of candidate individu-
als,
update the fitness estimates, centric to the first unit, for
selected ones of individuals received back from the
subject unit after testing, in dependence upon the
results of such testing, and
report to the further unit, selected individuals from the
first memory in conjunction with the individuals’
fitness estimates, centric to the first unit.
6. The arrangement of claim 1, further comprising the
particular client unit,
wherein the particular client unit includes a particular
processor and a particular memory, the particular
memory storing a local pool of candidate individuals,
each of the candidate individuals identifying at least
one classification rule and further identifying a respec-
tive fitness estimate centric to the particular unit and a
respective testing experience level centric to the par-
ticular unit,
and wherein the particular processor is configured to:
store in the subject memory individuals received by the
particular unit from the subject unit, for evaluation
against a portion of the training data,
test individuals from the particular unit’s local pool of
candidate individuals,
update the fitness estimates, centric to the particular
unit, for selected ones of individuals tested, in depen-
dence upon the results of such testing, and

5

10

20

35

40

45

50

55

60

65

30

report to the subject unit, selected individuals from the
particular memory in conjunction with the individu-
als’ fitness estimates and testing experience levels,
centric to the particular unit.

7. The arrangement of claim 1, wherein each of the
candidate individuals in the subject memory further identi-
fies a respective testing experience level centric to the
subject unit,

wherein the subject memory further identifies parameters

for each of a plurality of consecutively increasing
ranges of candidate testing experience levels, from a
first range to a top range,

and wherein in the subject processor is further configured

to select individuals for discarding from the local pool,
in dependence upon their fitness estimates relative to
the fitness estimates of the other individuals within the
same testing experience range.

8. The arrangement of claim 7, further comprising the
particular client unit,

wherein the particular client unit includes a particular

processor and a particular memory, the particular
memory storing a local pool of candidate individuals,
each of the candidate individuals identifying at least
one classification rule and further identifying a respec-
tive fitness estimate centric to the particular unit and a
respective testing experience level centric to the par-
ticular unit,

wherein the particular memory further identifies param-

eters for each of a plurality of consecutively increasing
ranges of candidate testing experience levels,

and wherein the particular processor is configured to:

store in the subject memory individuals received by the
particular unit from the subject unit, for evaluation
against a portion of the training data,

test individuals from the particular unit’s local pool of
candidate individuals,

update the fitness estimates, centric to the particular
unit, for selected ones of individuals tested, in depen-
dence upon the results of such testing,

select individuals for discarding from the particular
unit’s local pool, in dependence upon their fitness
estimates relative to the fitness estimates of the other
individuals in the particular unit’s local pool which
are within the same testing experience range, and

report to the subject unit, selected individuals from the
particular memory in conjunction with the individu-
als’ fitness estimates and testing experience levels,
centric to the particular unit.

9. The arrangement of claim 8, wherein the consecutively
increasing ranges of candidate testing experience levels in
the particular memory extends from a lowest range the
minimum testing experience level of which is below that of
the first testing experience range in the subject memory, to
a top range the minimum testing experience level of which
is at least as high as that of the first testing experience range
in the subject memory.

10. The arrangement of claim 9, wherein the subject
processor is configured to, in delegating to the particular
client unit, evaluation of individuals from the subject unit’s
local pool of candidate individuals, delegate only individu-
als from the subject unit’s ranges of candidate testing
experience levels.

11. The arrangement of claim 9, wherein the particular
processor is configured to, in reporting to the subject unit,
selected individuals from the particular memory, reports
only individuals having a testing experience level centric to
the particular unit whose testing experience levels are at

US 9,466,023 Bl

31

least as high as the minimum testing experience level of the
first testing experience range in the subject memory.

12. The arrangement of claim 11, wherein the subject
processor is configured to, in delegating to the particular
client unit, evaluation of individuals from the subject unit’s
local pool of candidate individuals, delegate only individu-
als from the subject unit’s ranges of candidate testing
experience levels.

13. The arrangement of claim 7, further comprising the
first unit,

wherein the first unit includes a first processor and a first

memory, the first memory storing a first local pool of
candidate individuals, each of the candidate individuals
in the first memory identifying at least one classifica-
tion rule and further identifying a respective fitness
estimate centric to the first unit and a respective testing
experience level centric to the first unit,

wherein the first memory further identifies parameters for

each of a plurality of consecutively increasing ranges of

candidate testing experience levels, from a first range to

a top range,

wherein the first processor is configured to:
store individuals in the first memory,
delegate, to the subject unit, evaluation of individuals
from the first unit’s local pool of candidate individu-
als,
update the fitness estimates, centric to the first unit, for
selected ones of individuals received back from the
subject unit after testing, in dependence upon the
results of such testing, and
select individuals for discarding from the first unit’s
local pool, in dependence upon their fitness estimates
relative to the fitness estimates of the other individu-
als in the first unit’s local pool which are within the
same testing experience range,
and wherein the consecutively increasing ranges of can-
didate testing experience levels in the subject memory
extends from a lowest range the minimum testing
experience level of which is below that of the first
testing experience range in the first memory, to a top
range the minimum testing experience level of which is
at least as high as that of the top testing experience
range in the subject memory.
14. A data mining arrangement, for use with a data mining
training database containing training data, comprising an
evolutionary coordinator infrastructure,
the evolutionary coordinator infrastructure including:
a top-chain evolutionary coordinator; and
a set of at least one mid-chain evolutionary coordinator,
each of the mid-chain coordinators being immedi-
ately down-chain to another respective one of the
evolutionary coordinators, at least one of the mid-
chain coordinators being immediately down-chain to
the top-chain coordinator,
for use with a set of at least one evolutionary engine each
being an evolutionary unit immediately down-chain to
a respective one of the evolutionary coordinators,

wherein each particular one of the evolutionary coordi-
nators includes a processor and a memory, the memory
storing a local pool of candidate individuals, each of the
candidate individuals identifying at least one classifi-
cation rule and further identifying a respective fitness
estimate centric to the particular evolutionary coordi-
nator,

10

15

20

25

30

35

40

45

50

55

60

65

32

wherein the processor of each given one of the mid-chain

evolutionary coordinators is configured to:

store in the memory of the given coordinator individu-
als received by the given coordinator from its up-
chain coordinator, for evaluation against a portion of
the training data,

delegate, to a unit down-chain of the given coordinator,
evaluation of individuals from the given coordina-
tor’s local pool of candidate individuals,

update the fitness estimates, centric to the given coor-
dinator, for selected ones of individuals received
back from the down-chain unit after testing, in
dependence upon the results of such testing, and

report to the given coordinator’s up-chain coordinator,
selected individuals from the memory of the given
coordinator in conjunction with the individuals’ fit-
ness estimates, centric to the given coordinator.

15. The arrangement of claim 14, wherein each of the
candidate individuals in the memory of each particular one
of the evolutionary coordinators further identifies a respec-
tive testing experience level centric to the particular evolu-
tionary coordinator,

wherein the memory of each particular one of the evolu-

tionary coordinators further identifies parameters for
each of a plurality of consecutively increasing ranges of
candidate testing experience levels, from a first range of
the particular coordinator to a top range of the particu-
lar coordinator,

and wherein in the processor of each particular one of the

evolutionary coordinators is further configured to select
individuals for discarding from the local pool, in
dependence upon their fitness estimates relative to the
fitness estimates of the other individuals within the
same testing experience range of the particular coordi-
nator.

16. The arrangement of claim 15, wherein the consecu-
tively increasing ranges of candidate testing experience
levels in the memory of each given one of the mid-chain
evolutionary coordinators extends up to a top range the
minimum testing experience level of which is at least as high
as that of the top testing experience range in the memory of
the evolutionary coordinator immediately up-chain from the
given mid-chain evolutionary coordinator.

17. The arrangement of claim 16, wherein the processor
of the top-chain evolutionary coordinator is configured to:

store individuals in the memory of the top-chain evolu-

tionary coordinator;

update the fitness estimates, centric to the top-chain

evolutionary coordinator, for selected ones of individu-
als that it receives from mid-chain evolutionary coor-
dinators, in dependence upon testing the individuals by
down-chain evolutionary units; and

select individuals for discarding from the top-chain evo-

Iutionary coordinator’s local pool, in dependence upon
their fitness estimates relative to the fitness estimates of
the other individuals in the top-chain evolutionary
coordinator’s local pool which are within the same
testing experience range.

18. The arrangement of claim 16, further comprising the
evolutionary engines,

wherein each particular one of the evolutionary engines

includes a processor and a memory, the memory of the
particular evolutionary engine storing a local pool of
candidate individuals, each of the candidate individuals
identifying at least one classification rule and further
identifying a respective fitness estimate centric to the

US 9,466,023 Bl

33

particular evolutionary engine and a respective testing

experience level centric to the particular evolutionary

engine,

wherein the memory of the particular evolutionary engine
further identifies parameters for each of a plurality of
consecutively increasing ranges of candidate testing
experience levels for the particular evolutionary
engine,

and wherein the processor of the particular evolutionary
engine is configured to:
store in the memory of the particular evolutionary

engine individuals received by the particular evolu-
tionary engine from its immediately up-chain evo-
lutionary coordinator, for evaluation against a por-
tion of the training data,

test individuals from the particular evolutionary
engine’s local pool of candidate individuals,

update the fitness estimates, centric to the particular
evolutionary engine, for selected ones of individuals
tested, in dependence upon the results of such test-
ing,

select individuals for discarding from the particular
evolutionary engine’s local pool, in dependence
upon their fitness estimates relative to the fitness
estimates of the other individuals in the particular
evolutionary engine’s local pool which are within the
same testing experience range, and

report to the evolutionary coordinator immediately
up-chain of the particular evolutionary engine,
selected individuals from the memory of the particu-
lar evolutionary engine, in conjunction with the
individuals® fitness estimates and testing experience
levels, centric to the particular evolutionary engine,

wherein the consecutively increasing ranges of candidate
testing experience levels in the memory of the particu-
lar evolutionary engine extends from a lowest range the
minimum testing experience level of which is below
that of the lowest testing experience range in the
evolutionary coordinator immediately up-chain of the
particular evolutionary engine, to a top range the mini-
mum testing experience level of which is at least as
high as that of the lowest testing experience range in the
evolutionary coordinator immediately up-chain of the
particular evolutionary engine.

19. A computer-implemented data mining arrangement,
for use with a data mining training database containing
training data, a top-chain evolutionary coordinator, and a set
of at least one evolutionary engine each being down-chain of
the top-chain evolutionary coordinator, comprising:

a mid-chain evolutionary coordinator being down-chain
of the top-chain coordinator and up-chain of the evo-
Iutionary engines, the mid-chain evolutionary coordi-
nator including:

a memory storing a local pool of candidate individuals,
each of the candidate individuals identifying a set of
at least one classification rule and further identifying
a respective fitness estimate centric to the mid-chain
evolutionary coordinator,

a receiving module which receives individuals to be
tested;

a delegation module which forwards selected ones of
the individuals from the mid-chain evolutionary
coordinator’s pool down-chain toward at least one of
the evolutionary engines for testing;

20

40

45

55

34

a competition module which

receives back individuals tested by the evolutionary
engines, in conjunction with an indication of the
results of such testing,

updates the mid-chain evolutionary coordinator’s
fitness estimates of the received individuals in
dependence upon the results of such testing, and

selects individuals for discarding in dependence
upon their updated fitness estimates; and

a candidate harvesting module which forwards selected
ones of the individuals from the mid-chain evolu-
tionary coordinator’s candidate pool up-chain
toward the top-chain evolutionary coordinator.

20. The arrangement of claim 19, wherein the mid-chain
evolutionary coordinator does not itself test any individuals.

21. The arrangement of claim 19, wherein the competition
module further selects individuals for discarding, in depen-
dence upon their fitness estimates, upon receipt of individu-
als by the receiving module,

and wherein the receiving module inserts into the mid-

chain evolutionary coordinator’s candidate pool, only

those received individuals not selected by the compe-
tition module for discarding.

22. The arrangement of claim 19, wherein each of the
candidate individuals in the local pool of candidate indi-
viduals further identifies a respective testing experience
level centric to the mid-chain evolutionary unit,

wherein the memory of the mid-chain evolutionary coor-

dinator further identifies parameters for each of a

plurality of consecutively increasing ranges of candi-

date testing experience levels, from a first range to a top
range,

and wherein in the competition module, in selecting

individuals for discarding in dependence upon their
updated fitness estimates, selects the individuals for
discarding, in dependence upon their fitness estimates
relative to the fitness estimates of the other individuals
within the same testing experience range.

23. The arrangement of claim 22, wherein the top-chain
evolutionary coordinator includes a memory storing a local
pool of candidate individuals, and further identifies param-
eters for each of a plurality of consecutively increasing
ranges of candidate testing experience levels, from a first
range to a top range,

and wherein the top range of candidate testing experience

levels in the mid-chain evolutionary coordinator has a

minimum experience level which is at least as high as

a minimum experience level of the top range of can-

didate testing experience levels in the top-chain evo-

Iutionary coordinator.

24. The arrangement of claim 23, wherein the top-chain
evolutionary coordinator includes a competition module
which selects individuals that are received from evolution-
ary units down-chain of the top-chain evolutionary coordi-
nator, for discarding in dependence upon their fitness esti-
mates relative to the fitness estimates of the other individuals
within the same testing experience range of the top-chain
evolutionary coordinator.

25. A computer-implemented data mining arrangement,
for use with a data mining training database containing
training data, comprising:

a set of evolutionary units including

a top-chain evolutionary coordinator,

a set of at least one mid-chain evolutionary coordinator,
each of the mid-chain coordinators being immedi-
ately down-chain to another respective one of the
evolutionary coordinators, at least one of the mid-

US 9,466,023 Bl

35

chain coordinators being immediately down-chain to
the top-chain coordinator; and
a set of at least one evolutionary engine each being
immediately down-chain to a respective one of the
evolutionary coordinators,
each of the evolutionary units including a memory storing
a respective pool of candidate individuals, each of the
candidate individuals identifying a set of at least one
classification rule and further identifying a respective
fitness estimate centric to the evolutionary unit,
each of the evolutionary engines further including
a module which receives individuals to be tested;
a candidate pool processor which tests, on at least a
portion of the training data, individuals from the
engine’s pool, and updates the tested individuals’
fitness estimates in the engine’s pool in dependence
upon the tests; and
a candidate harvesting module which forwards selected
ones of the individuals from the engine’s pool to the
engine’s up-chain evolutionary coordinator,
each of the mid-chain evolutionary coordinators including
a module which receives individuals to be tested;
a delegation module which forwards selected ones of
the individuals from the coordinator’s pool to its
down-chain units for testing;
a competition module which
receives back individuals from the down-chain units
after testing, in conjunction with an indication of
the results of such testing,

updates the coordinator’s fitness estimates of the
received individuals in dependence upon the
results of such testing, and

selects individuals for discarding in dependence
upon their updated fitness estimates; and

a candidate harvesting module which forwards selected
ones of the individuals from the coordinator’s pool to
the coordinator’s up-chain evolutionary coordinator,
and

the top-chain evolutionary coordinator including
a delegation module which forwards selected ones of

the individuals from the coordinator’s pool to its
down-chain units for testing;
a competition module which
receives back individuals from the down-chain units
after testing, in conjunction with an indication of
the results of such testing,

updates the coordinator’s fitness estimates of the
received individuals in dependence upon the
results of such testing, and

selects individuals for discarding in dependence
upon their updated fitness estimates; and

a candidate harvesting module which provides for
deployment selected ones of the individuals from the
coordinator’s pool.

26. A data mining method, for use with a data mining

training database containing training data, comprising:

a first one of the evolutionary coordinators receiving from
an up-chain evolutionary coordinator a first individual
for testing on training data, the first individual having
associated therewith an indication of a fitness estimate
as viewed by the first evolutionary coordinator;

the first evolutionary coordinator delegating the first indi-
vidual to a second evolutionary unit down-chain of the
first evolutionary coordinator, for testing on training
data;

the first evolutionary coordinator receiving the first indi-
vidual back from the second evolutionary unit after

10

15

20

25

30

40

45

55

60

36

testing on training data and updating the first evolu-
tionary coordinator’s view of the individual’s fitness
estimate in dependence upon results of the testing;

the first evolutionary coordinator causing the first indi-
vidual to compete on the basis of its updated fitness
estimate with other individuals for a place in a candi-
date pool of the first evolutionary coordinator;

the first evolutionary coordinator retaining the first indi-

vidual in the candidate pool of the first evolutionary
coordinator if the first individual competed success-
fully; and

the first evolutionary coordinator returning the first indi-

vidual to the up-chain evolutionary coordinator in
conjunction with the updated fitness estimate.

27. The arrangement of claim 25, wherein at least two of
the evolutionary engines are both immediately down-chain
of a particular one of the evolutionary coordinators.

28. The arrangement of claim 27, wherein the particular
evolutionary coordinator is the top-chain evolutionary coor-
dinator.

29. The arrangement of claim 27, wherein the particular
evolutionary coordinator is a mid-chain evolutionary coor-
dinator.

30. The arrangement of claim 25, wherein one of the
mid-chain evolutionary coordinators is immediately down-
chain of a second one of the mid-chain evolutionary coor-
dinators.

31. The arrangement of claim 25, wherein one of the
mid-chain evolutionary coordinators is immediately up-
chain of both a second one of the mid-chain evolutionary
coordinators, and one of the evolutionary engines.

32. The arrangement of claim 25, wherein the top-chain
evolutionary coordinator is immediately up-chain of both a
one of the mid-chain evolutionary coordinators, and one of
the evolutionary engines.

33. The arrangement of claim 32, wherein the top-chain
evolutionary coordinator is also immediately up-chain of a
second one of the mid-chain evolutionary coordinators.

34. The arrangement of claim 32, wherein the top-chain
evolutionary coordinator is also immediately up-chain of a
second one of the evolutionary engines.

35. The arrangement of claim 25, wherein at least one of
the evolutionary units further includes a procreation module
which forms new individuals in dependence upon a respec-
tive set of at least one parent individual from the unit’s pool.

36. The arrangement of claim 35, wherein all evolutionary
units in the arrangement that include a procreation module
which forms new individuals in dependence upon a respec-
tive set of at least one parent individual from the unit’s pool,
are evolutionary engines.

37. The arrangement of claim 25, wherein at least one of
the evolutionary engines further includes a creation module
which creates non-procreated individuals and inserts them
into the engine’s pool.

38. The arrangement of claim 37, wherein the creation
module creates the non- procreated individuals randomly.

39. The method of claim 26, wherein the first evolutionary
coordinator discards the first individual in response to the
first individual failing the competition.

40. The method of claim 26, further comprising:

the first evolutionary coordinator delegating the first indi-

vidual further to a third evolutionary unit down-chain
of the first evolutionary coordinator, for additional
testing on training data;

the first evolutionary coordinator receiving the first indi-

vidual back from the third evolutionary unit after
testing on training data and updating the first evolu-

US 9,466,023 Bl

37

tionary coordinator’s view of the individual’s fitness
estimate in dependence upon results of the additional
testing;

the first evolutionary coordinator causing the first indi-

vidual to compete a second time on the basis of its
updated fitness estimate with other individuals for a
place in the candidate pool of the first evolutionary
coordinator;

the first evolutionary coordinator retaining the first indi-

vidual in the candidate pool of the first evolutionary
coordinator if the first individual competed success-
fully in the second competition.

41. The method of claim 40, wherein delegation of the
first individual further to a third evolutionary unit occurs
after delegation of the first individual to the second evolu-
tionary unit and before the first evolutionary coordinator
receives the first individual back from the second evolution-
ary unit.

42. The method of claim 26, further comprising:

in response to receipt of the first individual by the second

evolutionary unit, the second evolutionary unit delegat-
ing the first individual to a third evolutionary unit
down-chain of the second evolutionary unit, for testing
on training data;

10

15

20

the second evolutionary unit receiving the first individual 25

back from the third evolutionary unit after testing on
training data and updating the second evolutionary

38

unit’s view of the first individual’s fitness estimate in
dependence upon results of the testing;

the second evolutionary unit causing the first individual to
compete on the basis of its updated fitness estimate
with other individuals for a place in a candidate pool of
the second evolutionary unit;

the second evolutionary unit retaining the first individual
in the candidate pool of the second evolutionary unit if
the first individual competed successfully; and

the second evolutionary unit returning the first individual
to the first evolutionary coordinator in conjunction with
the second evolutionary unit’s view of the first indi-
vidual’s updated fitness estimate.

43. The method of claim 26, further comprising:

an evolutionary engine down-chain of the first evolution-
ary coordinator receiving the first individual for testing
on training data, testing the first individual on training
data, developing an updated fitness estimate of the first
individual as viewed by the evolutionary engine, and
returning the first individual, in conjunction with an
indication of the evolutionary engine’s view of the
updated fitness estimate, up-chain toward the first evo-
Iutionary coordinator.

44. The method of claim 26, further comprising providing

the first individual for deployment.

#* #* #* #* #*

